Please wait a minute...
金属学报  2021, Vol. 57 Issue (10): 1281-1290    DOI: 10.11900/0412.1961.2020.00482
  研究论文 本期目录 | 过刊浏览 |
齿轮钢铸态点状偏析及其在热轧棒材中的演变
张壮1, 李海洋2, 周蕾2, 刘华松1, 唐海燕1, 张家泉1()
1.北京科技大学 冶金与生态工程学院 北京 100083
2.南京钢铁股份有限公司 特钢事业部 南京 210035
As-Cast Spot Segregation of Gear Steel and Its Evolution in the Rolled Products
ZHANG Zhuang1, LI Haiyang2, ZHOU Lei2, LIU Huasong1, TANG Haiyan1, ZHANG Jiaquan1()
1.School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Special Steel Department, Nanjing Iron & Steel Co. , Ltd. , Nanjing 210035, China
引用本文:

张壮, 李海洋, 周蕾, 刘华松, 唐海燕, 张家泉. 齿轮钢铸态点状偏析及其在热轧棒材中的演变[J]. 金属学报, 2021, 57(10): 1281-1290.
Zhuang ZHANG, Haiyang LI, Lei ZHOU, Huasong LIU, Haiyan TANG, Jiaquan ZHANG. As-Cast Spot Segregation of Gear Steel and Its Evolution in the Rolled Products[J]. Acta Metall Sin, 2021, 57(10): 1281-1290.

全文: PDF(3720 KB)   HTML
摘要: 

对齿轮钢铸坯中的点状偏析和轧材中的带状偏析缺陷进行了实验研究以探究其相关性。利用低倍侵蚀、枝晶侵蚀、电子探针和特征参数统计计算等方法,研究了点状偏析和带状缺陷的形貌特征、位置分布及元素分布规律,分析了2者之间的演变规律和差异,并讨论了带状缺陷的成因及其热处理消除的可能性。实验结果表明,起源于凝固过程的点状偏析主要分布在铸坯中心等轴晶区域,偏析点内合金元素表现为显著的正偏析。带状缺陷表现为单条型带和聚合型带,轧材中心区域的带状缺陷在位置及元素分布规律上都与铸态点状偏析具有对应性。统计与扩散计算表明,枝晶偏析和相互独立的点状偏析在轧制过程中被压延形成单条型的带状缺陷;一种相互连接的复杂形貌点状偏析经轧制塑性变形后将形成聚合型带,从而导致轧材带状缺陷的条数多于点状偏析的数量。对于带宽约40 μm以下的带状缺陷,1200℃保温热处理工艺可以减轻其中的偏析程度;但对于约40 μm以上的粗大带状缺陷,后续热处理改善效果有限,必须从连铸源头铸态组织控制着手。

关键词 齿轮钢凝固组织点状偏析带状缺陷演变    
Abstract

As a crucial transmission component and basic component in mechanical equipment, gears have extremely high requirements for homogeneity of elements. However, the banded segregation defects in a rolled bar will reduce the hardenability of the finished gear and cause uneven deformation in heat treatment. Generally, the formation of banded defects is believed to inseparable from semimacro segregation in the bloom castings. Spot segregation in gear steel bloom and banded segregation defects in a rolled bar were experimentally studied to explore its evolution. The correlation between the spot segregation and banded defects was clarified from the aspects of morphology characteristics, position distribution, element segregation, and spacing statistics using hot acid etching, dendritic etching, electron probe microanalysis (EPMA), and statistical calculations. The evolution law of spot segregation and the possibility of elimination of banded defects in the heat treatment stage were also discussed. Experimental results show that spot segregation mainly exists in the central equiaxed crystal area of the castings, and solute elements such as C, Mn, and Cr in the segregated spot show positive segregation. The wide banded defects are consistent with the spot segregation in their geometrical location and element distribution pattern. Morphologically, there are two types of banded defects in which the dendrite microsegregation and the independently existing spot segregation are changed into separate band structures during the hot rolling process, while the interconnected spot segregations convert into a type of converged band defect through the hot deformation. Thus, more fine and coarse banded defects have been observed in the final rolled bar products than the numbers of as-cast spot segregation. Heat treatment through heating and insulation at 1200oC can reduce the degree of solute segregation in the banded defects with a width less than 40 μm, but it shows little beneficial effect on the more coarse-sized banded defects, which suggests that they should be controlled from the original as-cast dendrite morphology during the casting process.

Key wordsgear steel    solidification structure    spot segregation    banded defect    evolution
收稿日期: 2020-12-02     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(U1860111、51874033);工业强基工程项目(TC180A3Y1/14)
作者简介: 张 壮,男,1995年生,博士生
图1  铸坯实验取样示意图
图2  棒材实验取样示意图
图3  铸坯横截面A样低倍侵蚀及其点状偏析局域枝晶形貌
图4  铸坯横截面表面至中心不同位置枝晶形貌的OM像
图5  铸坯心部点状偏析区域的SEM像及元素分布EPMA面扫描和线扫描结果
图6  铸坯心部纵剖面带状缺陷形貌OM像
图7  棒材纵剖面心部带状缺陷区域的OM像及元素EPMA面扫描和线扫描结果
图8  棒材纵、横截面组织形貌OM像与铸坯宏观低倍形貌图
图9  带状缺陷间距和斑点间距统计数据频率分布直方图及正态分布曲线图
图10  铸坯点状偏析至棒材带状缺陷的形貌演变示意图
图11  高温保温过程棒材带状偏析元素扩散分布曲线图
图12  不同带宽和带间距下保温过程偏析元素扩散均匀化所需时间
1 Zhang Y, Huo S B, Huang Y X. Developing and producing of gear steel [J]. Metall. Standard. Qual., 2003, 41(1): 17
1 张 悦, 霍松波, 黄一新. 齿轮钢的开发与生产 [J]. 冶金标准化与质量, 2003, 41(1): 17
2 Guo F J, Wang X L, Wang J L, et al. The significance of central segregation of continuously cast billet on banded microstructure and mechanical properties of section steel [J]. Metals, 2020, 10: 76
3 Navas V G, Gonzalo O, Quintana I, et al. Residual stresses and structural changes generated at different steps of the manufacturing of gears: Effect of banded structures [J]. Mater. Sci. Eng., 2011, A528: 5146
4 Thompson S W, Howell P R. Factors influencing ferrite/pearlite banding and origin of large pearlite nodules in a hypoeutectoid plate steel [J]. Mater. Sci. Technol., 1992, 8: 777
5 Hunkel M, Kagathara J, Prahl U. The influence of segregations after forming on the heat treatment result of bevel gears [J]. Steel. Res. Int., 2019, 90: 1800427
6 Lan P, Tie Z P, Zhang W, et al. Research progress on spot segregation defects in continuously cast semi-products [J]. Iron Steel, 2020, 55(2): 11
6 兰 鹏, 铁占鹏, 张 伟等. 连铸坯点状偏析缺陷研究进展 [J]. 钢铁, 2020, 55(2): 11
7 Tsuchida Y, Nakada M, Sugawara I, et al. Behavior of semi-macroscopic segregation in continuously cast slabs and technique for reducing the segregation [J]. Trans. Iron Steel Inst. Japan, 1984, 24: 899
8 Fang J, He Y D, Tian D, et al. Study on spot segregation and internal bubble defects of low carbon gear steel [J]. Spec. Steel, 1991, 12(4): 31
8 方 军, 何英达, 田 党等. 低碳齿轮钢中点状偏析及内部气泡缺陷的研究 [J]. 特殊钢, 1991, 12(4): 31
9 Ji Y, Lan P, Geng H, et al. Behavior of spot segregation in continuously cast blooms and the resulting segregated band in oil pipe steels [J]. Steel Res. Int., 2018, 89: 1700331
10 Geng H, Zhang Z H, Tang H Y, et al. Study on segregation and Nb-bearing precipitates of high-strength oil well casing steel [J]. J. Iron. Steel Res., 2019, 31: 387
10 耿 豪, 张忠铧, 唐海燕等. 高强度油井套管钢偏析与含Nb析出相研究 [J]. 钢铁研究学报, 2019, 31: 387
11 Xu Z G, Wang X H, Huang F X, et al. Solidification structure and semi-macro segregation of pipeline steel continuous casting slabs [J]. J. Univ. Sci. Technol. Beijing., 2014, 36: 751
11 许志刚, 王新华, 黄福祥等. 管线钢连铸板坯的半宏观偏析和凝固组织 [J]. 北京科技大学学报, 2014, 36: 751
12 Yang C, Min Y A, Ouyang J X. Influence of banded microstructure on quenching dilatometry in 22CrMo steel bars [J]. Trans. Mater. Heat Treat., 2014, 35(8): 80
12 杨 超, 闵永安, 欧阳剑雄. 带状组织对22CrMo钢棒材淬火特性的影响 [J]. 材料热处理学报, 2014, 35(8): 80
13 Liu Y X. Reason of formation, harmful effect and removal of band structure in low carbon alloy steel [J]. Heat Treat., 2000, (12): 1
13 刘云旭. 低碳合金钢中带状组织的成因、危害和消除 [J]. 金属热处理, 2000, (12): 1
14 Groβterlinden R, Kawalla R, Lotter U, et al. Formation of pearlitic banded structures in ferritic-pearlitic steels [J]. Steel Res., 1992, 63: 331
15 Krauss G. Solidification, segregation, and banding in carbon and alloy steels [J]. Metall. Mater. Trans., 2003, 34B: 781
16 Offerman S E, van Dijk N H, Rekveldt M T, et al. Ferrite/pearlite band formation in hot rolled medium carbon steel [J]. Mater. Sci. Technol., 2002, 18: 297
17 He X F, Wang X H, Wang Y, et al. Formation and effects of banded structures in 55SiCrA spring steel wire rod [J]. Metall. Res. Technol., 2015, 112: 606
18 Preβlinger H, Mayr M, Tragl E, et al. Assessment of the primary structure of slabs and the influence on hot-and cold-rolled strip structure [J]. Steel Res. Int., 2006, 77: 107
19 Zhang Y L, Liu H Y, Ruan X J, et al. Microsegregation behaviors of alloy elements and their effects on the formation of banded structure in pinion steels [J]. J. Univ. Sci. Technol. Beijing, 2009, 31(suppl.1): 199
19 张延玲, 刘海英, 阮小江等. 中低碳齿轮钢中合金元素的偏析行为及其对带状组织的影响 [J]. 北京科技大学学报, 2009, 31(): 199
20 Zhang Y H, Lai H Z, Zhao H J. Research status of banded structure in steel [J]. Steel Rolling, 2014, 31(3): 45
20 张迎晖, 赖泓州, 赵鸿金. 钢中带状组织的研究现状 [J]. 轧钢, 2014, 31(3): 45
21 Ji Y, Min Y F, Li P S, et al. Research status of banding phenomena in steels [J]. China Metall., 2016, 26(4): 1
21 纪 元, 闵云峰, 李鹏善等. 钢中带状组织及其研究现状 [J]. 中国冶金, 2016, 26(4): 1
22 Zhang Z Q, Wang X H, Huang F X, et al. Relationship between solidification microstructure and centerline segregation in pipeline steel slabs with soft-reduction condition [J]. Iron Steel, 2012, 47(12): 39
22 张正群, 王新华, 黄福祥等. 轻压下条件下管线钢铸坯凝固组织与中心偏析的关系 [J]. 钢铁, 2012, 47(12): 39
23 Ji Y, He Q, Geng H, et al. Effect of dendritic structure on the spot segregation of continuously cast round bloom [A]. AISTech 2017-Proceedings of the Iron and Steel Technology Conference [C]. Nashiville: Association for Iron and Steel Technology (AISTECH), 2017: 2599
24 Xu X J, Deng A Y, Wang E G, et al. Effect mechanism of high frequency electro-magnetic field on the surface quality and equiaxed crystal ratio of 15CrMo billet [J]. Acta Metall. Sin., 2009, 45: 1330
24 许秀杰, 邓安元, 王恩刚等. 高频电磁场对15CrMo连铸坯表面质量和等轴晶率的影响机理 [J]. 金属学报, 2009, 45: 1330
25 Nuri Y, Ohashi T, Hiromoto T, et al. Solidification macrostructure of ingots and continuously cast slabs treated with rare earth metal [J]. Trans. Iron Steel Inst. Japan, 1982, 22: 408
26 Li G, Lan P, Zhang J Q. Solidification structure refinement in TWIP steel by Ce inoculation [J]. Acta Metall. Sin., 2020, 56: 704
26 李 根, 兰 鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化 [J]. 金属学报, 2020, 56: 704
27 Li B, Zhang Z H, Liu H S, et al. Characteristics and evolution of the spot segregations and banded defects in high strength corrosion resistant tube steel [J]. Acta Metall. Sin., 2019, 55: 762
27 李 博, 张忠铧, 刘华松等. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变 [J]. 金属学报, 2019, 55: 762
28 Haida O, Kitaoka H, Habu Y, et al. Macro-and semi-macroscopic features of the centerline segregation in CC slabs and their effect on product quality [J]. Trans. Iron Steel Inst. Japan, 1984, 24: 891
29 Xu Z G, Wang X H, Zhou L, et al. Effects of soft reduction parameters on semi-macro segregation in continuously cast slab [J]. Iron Steel, 2014, 49(3): 36
29 许志刚, 王新华, 周 力等. 轻压下参数对连铸板坯半宏观偏析的影响 [J]. 钢铁, 2014, 49(3): 36
30 Oh K S, Chang Y W. Macro and microscopic segregation behavior of center segregations in high carbon steel CC blooms during the final stage of solidification [J]. Process. Technol., 1995, 13: 381
31 Rivera-Díaz-Del-Castillo P E J, Van Der Zwaag S, Sietsma J. A model for ferrite/pearlite band formation and prevention in steels [J]. Metall. Mater. Trans., 2004, 35A: 425
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[5] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[6] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[7] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[8] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[9] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[10] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[11] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[12] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[13] 朱苗勇, 邓志银. 钢精炼过程非金属夹杂物演变与控制[J]. 金属学报, 2022, 58(1): 28-44.
[14] 肖娜, 惠卫军, 张永健, 赵晓丽. 真空渗碳处理齿轮钢的氢脆敏感性[J]. 金属学报, 2021, 57(8): 977-988.
[15] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.