Please wait a minute...
金属学报  2019, Vol. 55 Issue (11): 1395-1406    DOI: 10.11900/0412.1961.2018.00555
  研究论文 本期目录 | 过刊浏览 |
Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响
朱上1,李志辉1(),闫丽珍1,李锡武1,张永安1,熊柏青1,2
1. 有研工程技术研究院有限公司有色金属制备加工国家重点实验室 北京 101407
2. 有研科技集团有限公司 北京 100088
Effects of Zn Addition on the Natural Ageing Behavior and Bake Hardening Response of a Pre-Aged Al-Mg-Si-Cu Alloy
ZHU Shang1,LI Zhihui1(),YAN Lizhen1,LI Xiwu1,ZHANG Yongan1,XIONG Baiqing1,2
1. State Key Laboratory of Nonferrous Metals and Processes, GRINMAT Engineering Institute Co. , Ltd. , Beijing 101407, China
2. GRINM Group Co. , Ltd. , Beijing 100088, China
引用本文:

朱上,李志辉,闫丽珍,李锡武,张永安,熊柏青. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响[J]. 金属学报, 2019, 55(11): 1395-1406.
Shang ZHU, Zhihui LI, Lizhen YAN, Xiwu LI, Yongan ZHANG, Baiqing XIONG. Effects of Zn Addition on the Natural Ageing Behavior and Bake Hardening Response of a Pre-Aged Al-Mg-Si-Cu Alloy[J]. Acta Metall Sin, 2019, 55(11): 1395-1406.

全文: PDF(10423 KB)   HTML
摘要: 

以含Zn和不含Zn的2种Al-Mg-Si-Cu合金为研究对象,研究了Zn添加(0.64%,质量分数)对预时效态Al-Mg-Si-Cu合金的自然时效行为和烘烤硬化响应的影响,并利用三维原子探针(3DAP)技术揭示了相关微观机理。结果表明,含Zn合金在80 ℃下预时效15 min后的自然时效过程中原子团簇的Zn含量增加,原子团簇的稳定性改变,与不含Zn合金相比,含Zn合金原子团簇生长得更快。含Zn和不含Zn合金在预时效后的自然时效过程中屈服强度增加,含Zn合金因为具有更小的原子团簇间距和更大的原子团簇剪切模量,其屈服强度始终高于不含Zn合金。预时效后自然时效不同时间后在170 ℃下进行30 min模拟烤漆处理,原子团簇向GP区和β"相的转变随着自然时效时间的延长而减弱,因此含Zn和不含Zn合金的烘烤屈服强度降低。Al基体中的Zn具有促进析出相转变的作用,因此含Zn合金的烘烤屈服强度始终高于不含Zn合金。

关键词 Al-Mg-Si-Cu合金时效Zn添加析出相    
Abstract

Al-Mg-Si(-Cu) alloys are widely used in automotive body panels because of their excellent combined performance of high strength-to-weight ratio, good formability and corrosion resistance. Zn additions to Al-Mg-Si(-Cu) alloys have been tested and shown to effectively affect the precipitation microstructure and enhance the age-hardening response. The present study investigates the natural ageing (NA) behavior and bake hardening response in the pre-aged Al-0.9Mg-0.8Si-0.2Cu (mass fraction, %) and Al-0.9Mg-0.8Si-0.2Cu-0.6Zn (mass fraction, %) alloys. The results are compared to clarify the effect of Zn addition. During NA after pre-ageing at 80 ℃ for 15 min (PA), cluster growth is the dominant process in the Zn-free and Zn-added alloys. Some Zn atoms are partitioned into the clusters under PA+NA condition. Partitioning of Zn may change the stability of clusters, increasing the growth rate of clusters. The yield strength of the two alloys increases with the increasing NA time. The smaller cluster spacing and larger cluster shear modulus lead to the higher yield strength in the Zn-added alloy during NA after PA. The prolonged NA inhibits the transformation of clusters to GP zones and β″ phases during bake hardening (BH) treatment at 170 ℃ for 30 min in the Zn-free and Zn-added alloys, resulting in the lower BH response. The Zn does not significantly partition into clusters or precipitates, and the majority of Zn remains in the Al matrix during BH treatment, prompting the transformation from solute clusters to GP zones and β″ phases. As a result, the yield strength of the Zn-added alloy after PA+NA+BH treatment is higher than that of the Zn-free alloy.

Key wordsAl-Mg-Si-Cu alloy    ageing    Zn addition    precipitate
收稿日期: 2018-12-19     
ZTFLH:  TG146.21  
基金资助:国家重点研发计划项目No(2016YFB0300802)
作者简介: 朱上,男,1989年生,博士生
AlloyMgSiZnCuMnZrFeAl
Zn-free0.900.820.0060.230.110.09<0.1Bal.
Zn-added0.920.780.6400.230.100.12<0.1Bal.
表1  不含Zn和含Zn的Al-Mg-Si-Cu合金的化学成分 (mass fraction / %)
图1  热处理过程示意图
图2  预时效态不含Zn和含Zn合金在自然时效和后续烘烤过程中显微硬度的变化曲线

Treatment

Zn-free alloyZn-added alloy
YS / MPaUTS / MPaA50 / %YS / MPaUTS / MPaA50 / %
PA+NA 2 d12724424.513224925.2
PA+NA 120 d13925725.014526625.5
PA+NA 2 d+BH17928522.119429821.5
PA+NA 120 d+BH16427324.817327823.9
表2  预时效态不含Zn和含Zn合金在自然时效和后续烘烤过程中的拉伸性能
图3  预时效态不含Zn和含Zn合金自然时效不同时间后析出相的3DAP形貌
图4  预时效态不含Zn和含Zn合金自然时效不同时间后对应烘烤状态下析出相的3DAP形貌
图5  不同时效条件下不含Zn和含Zn合金中析出相尺寸与形状的关系
图6  预时效态不含Zn和含Zn合金在自然时效和后续烘烤过程中的析出相数量密度
图7  预时效态不含Zn和含Zn合金在自然时效和后续烘烤条件下析出相(原子团簇、GP区和β″相)中的溶质原子分数
AlloyAgeing treatmentPrecipitate typeYield strength / MPa

Zn-free

PA+NA 2 dCluser33.6
PA+NA 120 dCluser36.9

Zn-added

PA+NA 2 dCluser40.7
PA+NA 120 dCluser47.4
表3  预时效态不含Zn和含Zn合金在自然时效条件下的屈服强度计算值
AlloyAgeing treatmentPrecipitate typeYield strength / MPa
Zn-freePA+NA 2 d+BHCluser28.6
GP zone15.9
PA+NA 120 d+BHCluser34.3
GP zone7.9
Zn-addedPA+NA 2 d+BHCluster32.1
GP zone21.8
β41.5
PA+NA 120 d+BHCluster46.4
GP zone15.7
β19.5
表4  预时效态不含Zn和含Zn合金自然时效不同时间对应的烘烤态屈服强度计算值
AlloyAgeing treatmentAverage radius / nmMg/Si ratioMg/Zn ratio
Zn-freePA+NA 2 d1.031.12-
PA+NA 120 d1.051.04-
Zn-addedPA+NA 2 d1.081.236.17
PA+NA 120 d1.131.133.22
表5  预时效后自然时效过程中不含Zn和含Zn合金中原子团簇的尺寸、Mg/Si原子比变化以及含Zn合金中原子团簇Mg/Zn原子比变化
图8  预时效态不含Zn和含Zn合金在自然时效和烘烤过程中的析出相演变的示意图
[1] PogatscherS, AntrekowitschH, LeitnerH, et al. Mechanisms controlling the artificial aging of Al-Mg-Si alloys [J]. Acta Mater., 2011, 59: 3352
[2] EdwardsG A, StillerK, DunlopG L, et al. The precipitation sequence in Al-Mg-Si alloys [J]. Acta Mater., 1998, 46: 3893
[3] WengY Y, JiaZ H, DingL P, et al. Clustering behavior during natural aging and artificial aging in Al-Mg-Si alloys with different Ag and Cu addition [J]. Mater. Sci. Eng., 2018, A732: 273
[4] MartinsenF A, EhlersF J H, Tors?terM, et al. Reversal of the negative natural aging effect in Al-Mg-Si alloys [J]. Acta Mater., 2012, 60: 6091
[5] FallahV, KorinekA, Ofori-OpokuN, et al. Atomic-scale pathway of early-stage precipitation in Al-Mg-Si alloys [J]. Acta Mater., 2015, 82: 457
[6] MurayamaM, HonoK, MiaoW F, et al. The effect of Cu additions on the precipitation kinetics in an Al-Mg-Si alloy with excess Si [J]. Metall. Mater. Trans., 2001, 32A: 239
[7] NiniveP H, StrandlieA, Gulbrandsen-DahlS, et al. Detailed atomistic insight into the β″ phase in Al-Mg-Si alloys [J]. Acta Mater., 2014, 69: 126
[8] YangW C, WangM P, ZhangR R, et al. The diffraction patterns from β″ precipitates in 12 orientations in Al-Mg-Si alloy [J]. Scr. Mater., 2010, 62: 705
[9] DingL P, HeY, WenZ, et al. Optimization of the pre-aging treatment for an AA6022 alloy at various temperatures and holding times [J]. J. Alloys Compd., 2015, 647: 238
[10] SerizawaA, HirosawaS, SatoT. Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al-Mg-Si alloy [J]. Metall. Mater. Trans., 2008, 39A: 243
[11] ArugaY, KozukaM, TakakiY, et al. Evaluation of solute clusters associated with bake-hardening response in isothermal aged Al-Mg-Si alloys using a three-dimensional atom probe [J]. Metall. Mater. Trans., 2014, 45A: 5906
[12] Tors?terM, HastingH S, LefebvreW, et al. The influence of composition and natural aging on clustering during preaging in Al-Mg-Si alloys [J]. J. Appl. Phys., 2010, 108: 0735527
[13] ZandbergenM W, XuQ, CerezoA, et al. Study of precipitation in Al-Mg-Si alloys by atom probe tomography I. Microstructural changes as a function of ageing temperature [J]. Acta Mater., 2015, 101: 136
[14] TakakiY, MasudaT, KobayashiE, et al. Effects of natural aging on bake hardening behavior of Al-Mg-Si alloys with multi-step aging process [J]. Mater. Trans., 2014, 55: 1257
[15] ArugaY, KozukaM, TakakiY, et al. Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al-Mg-Si alloy [J]. Scr. Mater., 2016, 116: 82
[16] DingX P, CuiH, ZhangJ X, et al. The effect of Zn on the age hardening response in an Al-Mg-Si alloy [J]. Mater. Des., 2015, 65: 1229
[17] YanL Z, ZhangY A, LiX W, et al. Effect of Zn addition on microstructure and mechanical properties of an Al-Mg-Si alloy [J]. Prog. Nat. Sci.Mater. Int., 2014, 24: 97
[18] SaitoT, WennerS, OsmundsenE, et al. The effect of Zn on precipitation in Al-Mg-Si alloys [J]. Philos. Mag., 2014, 94: 2410
[19] GuoM X, ZhangY, ZhangX K, et al. Non-isothermal precipitation behaviors of Al-Mg-Si-Cu alloys with different Zn contents [J]. Mater. Sci. Eng., 2016, A669: 20
[20] HonoK. Atom probe microanalysis and nanoscale microstructures in metallic materials [J]. Acta Mater., 1999, 47: 3127
[21] WangB, WangX J, SongH, et al. Strengthening effects of microstructure evolution during early ageing process in Al-Mg-Si alloy [J]. Acta Metall. Sin., 2014, 50: 685
[21] 汪 波, 王晓姣, 宋 辉等. Al-Mg-Si合金时效早期显微组织演变及其对强化的影响 [J]. 金属学报, 2014, 50: 685
[22] ShaG, M?llerH, StumpfW E, et al. Solute nanostructures and their strengthening effects in Al-7Si-0.6Mg alloy F357 [J]. Acta Mater., 2012, 60: 692
[23] BuhaJ, LumleyR N, CroskyA G, et al. Secondary precipitation in an Al-Mg-Si-Cu alloy [J]. Acta Mater., 2007, 55: 3015
[24] LiH, LiuW Q. Nanoprecipitates and their strengthening behavior in Al-Mg-Si alloy during the aging process [J]. Metall. Mater. Trans., 2017, 48A: 1990
[25] KarneskyR A, SudbrackC K, SeidmanD N. Best-fit ellipsoids of atom-probe tomographic data to study coalescence of γ′ (L12) precipitates in Ni-Al-Cr [J]. Scr. Mater., 2007, 57: 353
[26] GaultB, MoodyM P, CairneyJ M, et al. Atom Probe Microscopy [M]. New York: Springer, 2012: 270
[27] EsmaeiliS, LloydD J, PooleW J. Modeling of precipitation hardening for the naturally aged Al-Mg-Si-Cu alloy AA6111 [J]. Acta Mater., 2003, 51: 3467
[28] StarinkM J, CaoL F, RometschP A. A model for the thermodynamics of and strengthening due to co-clusters in Al-Mg-Si-based alloys [J]. Acta Mater., 2012, 60: 4194
[29] MarceauR K W, de VaucorbeilA, ShaG, et al. Analysis of strengthening in AA6111 during the early stages of aging: Atom probe tomography and yield stress modelling [J]. Acta Mater., 2013, 61: 7285
[30] BrandesE A, BrookG B. Smithells Metals Reference Book [M]. 7th Ed., London: Butterworth-Heinemann, 1992: 15
[31] LiuG, ZhangG J, DingX D, et al. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates [J]. Mater. Sci. Eng., 2003, A344: 113
[32] SeidmanD N, MarquisE A, DunandD C. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys [J]. Acta Mater., 2002, 50: 4021
[33] KingH W. Quantitative size-factors for metallic solid solutions [J]. J. Mater. Sci., 1966, 1: 79
[34] ZandbergenM W, CerezoA, SmithG D W. Study of precipitation in Al-Mg-Si alloys by atom probe tomography II. Influence of Cu additions [J]. Acta Mater., 2015, 101: 149
[35] ArugaY, KozukaM, TakakiY, et al. Formation and reversion of clusters during natural aging and subsequent artificial aging in an Al-Mg-Si alloy [J]. Mater. Sci. Eng., 2015, A631: 86
[36] AdachiH, NakanishiH, AsanoM. Soft X-ray XAFS studies on Al-Mg-Si alloys with different aging conditions [J]. J. Jpn.Inst.Light Met., 2015, 65: 411(足立 大樹, 中西 英貴, 浅野 峰生. 時効条件が異なるAl-Mg-Si合金における軟X線XAFS測定 [J]. 軽金属, 2015, 65: 411
[37] ZhuS, LiZ H, YanL Z, et al. Effects of Zn addition on the age hardening behavior and precipitation evolution of an Al-Mg-Si-Cu alloy [J]. Mater. Charact., 2018, 145: 258
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[3] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[4] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[5] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[6] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[7] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[8] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[9] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[10] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[11] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[12] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[13] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[14] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[15] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.