Please wait a minute...
金属学报  2016, Vol. 52 Issue (6): 698-706    DOI: 10.11900/0412.1961.2015.00496
  论文 本期目录 | 过刊浏览 |
电磁场作用下半固态A356-La铝合金初生相形貌及分形维数的研究*
刘政1(),徐丽娜2,余昭福2,陈杨政2
1 江西理工大学机电工程学院, 赣州 341000
2 江西理工大学材料科学与工程学院, 赣州 341000
RESEARCH ON THE MORPHOLOGY AND FRACTALDIMENSION OF PRIMARY PHASE IN SEMISOLIDA356-La ALUMINUM ALLOY BY ELECTRO-MAGNETIC STIRRING
Zheng LIU1(),Lina XU2,Zhaofu YU2,Yangzheng CHEN2
1 School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2 School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
引用本文:

刘政,徐丽娜,余昭福,陈杨政. 电磁场作用下半固态A356-La铝合金初生相形貌及分形维数的研究*[J]. 金属学报, 2016, 52(6): 698-706.
Zheng LIU, Lina XU, Zhaofu YU, Yangzheng CHEN. RESEARCH ON THE MORPHOLOGY AND FRACTALDIMENSION OF PRIMARY PHASE IN SEMISOLIDA356-La ALUMINUM ALLOY BY ELECTRO-MAGNETIC STIRRING[J]. Acta Metall Sin, 2016, 52(6): 698-706.

全文: PDF(1311 KB)   HTML
  
摘要: 

利用稀土La对液态A356铝合金进行了细化处理, 并在电磁搅拌技术下制备了半固态A356-La铝合金浆料, 研究了稀土La和电磁搅拌对半固态A356铝合金初生相形貌的影响, 并用分形维数对其初生相形貌进行了表征. 结果表明, 添加适量的稀土La可有效改善半固态A356铝合金初生相的形貌, 无论是否经过电磁搅拌, 随着稀土添加量的增加, A356 铝合金的初生相形貌均呈先变好后恶化的演变规律, 当稀土La的添加量为0.4% (质量分数)时, 其初生α相的形貌和尺寸均达到最佳, 其平均等积圆直径为88.85 μm, 平均形状因子为0.78; 当稀土La的添加量相同时, 经过电磁搅拌作用的A356-La 铝合金初生α相的平均等积圆直径均比未经过电磁搅拌的更小, 其形状因子则相反, 均比未经过电磁搅拌的更大, 说明经过电磁搅拌的半固态A356铝合金初生α相比未搅拌过的更细小、圆整, 即经过电磁搅拌的初生α相形貌更佳, 如当La含量为0.4%时, 其平均等积圆直径由88.85 μm 降至84.14 μm, 平均形状因子由0.78升至0.81. 此外, 实际的合金凝固组织具有分形特征, 应用分形几何的原理来描述和分析半固态铝合金中初生相的形貌变化规律甚至初生相形成机理是完全可能的. 且不同工艺参数下所获得的半固态铝合金初生相形貌具有不同的分形维数, 随着半固态初生相由树枝状向颗粒状或球状变化, 其分形维数逐渐变小.

关键词 A356铝合金La电磁搅拌初生相形貌分形    
Abstract

In order to obtain the fine, round and uniform distribution primary α phase in semisolid A356 alloy, the different amount of La was added into the alloy melt, and the melt was poured at 650 ℃ and slightly electromagnetically stirred under the condition of 30 Hz and 15 s, then, it was isothermally held at 590 ℃ for 10 min. The microstructure of the samples was observed by OM and SEM. The influences of La and electromagnetic stirring on morphology of primary α phase in semisolid A356 alloy were studied, and the symbolization of the characteristics of morphology of primary α phase by the fractal dimension was discussed in this work. The results showed that the morphology of primary α phase in semisolid A356 alloy was effectively improved by the suitable addition of La, no matter whether the semisolid slurry of A356-La alloy was prepared by electromagnetic stirring or not, the morphology of primary α phase showed better at first and then worse as the amounts of La increases, and the morphology and grain size of primary α phase reach the optimal state when the content of La was 0.4% (mass fraction). At the same time, the average equal-area circle diameter of the morphology of primary phase in semisolid A356-La alloy by electromagnetic stirring was finer than that without stirring, on the other hand, the shape factor was bigger than that without stirring. It implies that the primary α phase in semisolid A356-La alloy by electromagnetic stirring was smaller and more rounded than that without stirring, that is, the morphology of primary α phase in semisolid A356-La alloy by electromagnetic stirring was better than that without stirring. In addition, the real microstructure has fractal characteristics, and it was feasible to describe and analyze the change regularity and even the formation mechanism of the morphology of primary α phase in semisolid aluminum alloy by the principle of fractal geometry. The morphology of primary α phase in semisolid A356 alloy by the different process parameters had different fractal dimension. The fractal dimension of the semisolid primary α phase gradually became smaller with its morphology changed from dendritic-like to particle-like or globular-like.

Key wordsA356 aluminum alloy    La    electromagnetic stirring    morphology of primary phase    fractal
收稿日期: 2015-09-23     
基金资助:* 国家自然科学基金项目51144009和51361012, 江西省自然科学基金项目20114bab206014和江西省教育厅科技项目GJJ14407资助
图1  未添加稀土的A356合金初生α相形貌的OM像
图2  添加不同含量稀土的A356合金初生α相形貌的OM像
图3  添加不同含量稀土并经电磁搅拌处理的A356合金初生α相形貌的OM像
图4  A356-La合金在有无电磁搅拌作用下初生α相的平均等积圆直径与形状因子
Mass fraction of La / % No stirring Stirring
0.2 1.4246 1.4079
0.4 1.4074 1.4015
0.6 1.4184 1.4075
0.8 1.4433 1.4260
表1  不同工艺条件下半固态A356合金初生相形貌的分形维数
图5  未经电磁搅拌处理的A356-0.2%La合金初生相形貌图像处理后的边界二值图和分形维数计算的双对数图
图6  未经电磁搅拌处理的A356-0.4%La合金初生相形貌图像处理后的边界二值图和分形维数计算的双对数图
图7  经过电磁搅拌处理的A356-0.4%La合金初生相形貌图像处理后的边界二值图和分形维数计算的双对数图
图8  A356-0.4% La合金的二次电子像和EDS分析
图9  A356-0.4%La合金的XRD谱
[1] Atkinson H V, Liu D.Mater Sci Eng, 2008; A496: 439
[2] Zhu G L, Xu J, Zhang Z F, Bai Y L, Shi L K.Acta Metall Sin (Engl Lett), 2009; 22: 408
[3] Chung I G, Bolouri A, Kang C G.Int J Adv Manuf Technol, 2012; 58: 237
[4] Nourouzi S, Baseri H, Kolahdooz A, Ghavamodini S M.J Mech Sci Technol, 2013; 27: 386
[5] Zhao J W, Wu S S, Wang L, Chen Q H, An P.Acta Metall Sin, 2009; 45: 314
[5] (赵君文, 吴树森, 万里, 陈启华, 安萍. 金属学报, 2009; 45: 314)
[6] Nafisi S, Emadi D, Shehata M T, Ghomashchi R.Mater Sci Eng, 2006; A432: 71
[7] Metan V, Eigenfeld K.Eur Phys J Spec Top, 2013; 220: 139
[8] Liu Z, Hu Y M.Rare Met, 2008; 27: 536
[9] Maja V, Stanislav K, Primo M.J Alloys Compd, 2011; 509: 7349
[10] Mousavi G S, Emamy M, Rassizadehgha J.Mater Sci Eng, 2012; A556: 573
[11] Jiang W M, Fan Z T, Dai Y C, Li C.Mater Sci Eng, 2014; A597: 237
[12] Kaur P, Dwivedi D K, Pathak P M.Int J Adv Manuf Technol, 2012; 63: 415
[13] Tsai Y C, Chou C Y, Lee S L, Lin C K, Lin J C, Lim S W.J Alloys Compd, 2009; 487: 157
[14] Liu Z, Liu X M, Zhu T, Chen Q C. Acta Metall Sin, 2015; 51: 272
[14] (刘政, 刘小梅, 朱涛, 谌庆春. 金属学报, 2015; 51: 272)
[15] Tang X L, Peng J H, Huang F L, Xu D Y, Du R S.Chin J Nonferrous Met, 2010; 20: 2112
[15] (唐小龙, 彭继华, 黄芳亮, 许德英, 杜日升. 中国有色金属学报, 2010; 20: 2112)
[16] Cheng P, Fan Z T, Zhao Z, Jiang W M.Foundry, 2010; 59: 833
[16] (成平, 樊自田, 赵忠, 蒋文明. 铸造, 2010; 59: 833)
[17] Li B, Wang H W, Jie J H, Wei Z J.J Alloys Compd, 2011; 509: 3387
[18] Li H, Li P, Xue K M.J Chin Rare Earth Soc, 2005; 23(S2): 104
[18] (李辉, 李萍, 薛克敏. 中国稀土学报, 2005; 23(增刊): 104)
[19] Liu Z, Hu Y M, Liu X M.Acta Metall Sin (Engl Lett), 2010; 23: 227
[20] Liu Y G, Zhang L M, Chen G, Liao H C, Sun G X.Nonferrous Met, 2005; 57(2): 15
[20] (刘永刚, 张良明, 陈光, 廖恒成, 孙国雄. 有色金属, 2005; 57(2): 15)
[21] Kang H S, Yoog W Y, Kim K H. Mater Sci Eng, 2007; A449-451: 334
[22] Zheng Z Q, Xiong X G, Yi R X, Wang L, Pei Z K.Nonferrous Met, 2010; 62(1): 6
[22] (郑志强, 熊新根, 易荣喜, 王丽, 裴志昆. 有色金属, 2010; 62(1): 6)
[23] Liu Z, Mao W M, Liu X M.Trans Nonferrous Met Soc China, 2009; 19: 1098
[24] Wang Z, Liu X F, He Y, Xie J X.Int J Min Met Mater, 2010; 17: 770
[25] Liu Z, Liu X M, Hu C H, Mao W M.Acta Metall Sin (Engl Lett), 2009; 22: 421
[26] Hangai Y, Kitahara S.Mater Des, 2009; 30: 1169
[27] Xie S S, Li X G, Wang H, Zhang Y.Technology of Semi-Solid Metal Processing. Beijing: Metallurgy Industry Press, 2012: 1
[27] (谢水生, 李兴刚, 王浩, 张莹编著. 金属半固态加工技术. 北京: 冶金工业出版社, 2012: 1)
[28] Zheng Z Q, Xiong X G, Chen K Y, Zhan D C, Yi R X.Spec Casting Nonferrous Alloys, 2008; 28: 171
[28] (郑志强, 熊新根, 陈克燕, 占多产, 易荣喜. 特种铸造及有色合金, 2008; 28: 171)
[29] Kang Y L, Mao W M, Hu Z Q.Theory and Technology of Semi-Solid Metal Materials Processing. Beijing: Science Press, 2004: 1
[29] (康永林, 毛卫民, 胡壮麒. 金属材料半固态加工理论与技术. 北京: 科学出版社, 2004: 1)
[30] Liu Z, Luo H L, Zhou X Y.Foundry, 2014; 63: 1212
[30] (刘政, 罗浩林, 周翔宇. 铸造, 2014; 63: 1212)
[31] Liu Z, Huang M Y, Cao K, Xu H B. Adv Mater Res, 2012; 424-425: 77
[32] Wang M, Zhao Y F, Chen Z N, Zeng Y P, Kang H J.Mater Des, 2015; 85: 724
[33] Zhang J Z.Fractals. Beijing: Tsinghua University Press, 1995: 1
[33] (张济忠. 分形. 北京:清华大学出版社, 1995: 1)
[34] Prigogine I.Introduction to Thermodynamics of Irreversible Processes. 3rd Ed., New York: Interscience Pub., 1967: 88
[35] Fan Z, Liu G, Hitchcock M. Mater Sci Eng, 2005; A413-414: 229
[36] Li R S.Non-Equilibrium Thermodynamics and Dissipative Structure. Beijing: Tsinghua University Press, 1986: 44
[36] (李如生. 非平衡态热力学与耗散结构. 北京: 清华大学出版社, 1986: 44)
[1] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[2] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[3] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[4] 陈建军, 丁雨田, 王琨, 闫康, 马元俊, 王兴茂, 周胜名. Laves相对 GH3625合金管材热挤压过程中爆裂行为的影响[J]. 金属学报, 2021, 57(5): 641-650.
[5] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.
[6] 郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响[J]. 金属学报, 2021, 57(1): 103-110.
[7] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
[8] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[9] 任忠鸣,雷作胜,李传军,玄伟东,钟云波,李喜. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600.
[10] 杜瑜宾, 胡小锋, 张守清, 宋元元, 姜海昌, 戎利建. 1.4%CuHSLA钢的组织和力学性能[J]. 金属学报, 2020, 56(10): 1343-1354.
[11] 王帅鹏, 罗文华, 李赣, 李海波, 张广丰. La含量对Ce-La合金氢化动力学的影响[J]. 金属学报, 2018, 54(8): 1187-1192.
[12] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[13] 秦高梧, 谢红波, 潘虎成, 任玉平. 一类介于晶体与准晶体之间的有序结构[J]. 金属学报, 2018, 54(11): 1490-1502.
[14] 侯自兵,曹江海,常毅,王伟,陈晗. 基于分形维数的模具钢电渣重熔铸坯碳偏析形貌特征研究[J]. 金属学报, 2017, 53(7): 769-777.
[15] 杨旭, 廖波, 刘坚, 严伟, 单以银, 肖福仁, 杨柯. 中国低活化马氏体钢在液态Pb-Bi中的脆化现象[J]. 金属学报, 2017, 53(5): 513-523.