Please wait a minute...
金属学报  2019, Vol. 55 Issue (3): 317-324    DOI: 10.11900/0412.1961.2018.00323
  本期目录 | 过刊浏览 |
含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究
吕钊钊1,祖宇飞1,沙建军1(),鲜玉强2,张伟2,崔鼎2,严从林2
1. 大连理工大学工业装备结构分析国家重点实验室 大连 116024
2. 中国工程物理研究院应用电子学研究所 绵阳 621900
Fabrication and Mechanical Properties of Carbon Fiber-Reinforced Aluminum Matrix Compositeswith Cu Interphase
Zhaozhao Lü1,Yufei ZU1,Jianjun SHA1(),Yuqiang XIAN2,Wei ZHANG2,Ding CUI2,Conglin YAN2
1. State Key Laboratory of Structural Analyses for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
2. Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China
引用本文:

吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
Zhaozhao Lü, Yufei ZU, Jianjun SHA, Yuqiang XIAN, Wei ZHANG, Ding CUI, Conglin YAN. Fabrication and Mechanical Properties of Carbon Fiber-Reinforced Aluminum Matrix Compositeswith Cu Interphase[J]. Acta Metall Sin, 2019, 55(3): 317-324.

全文: PDF(13418 KB)   HTML
摘要: 

为了改善碳纤维与Al基体的润湿性和抑制Al基体对碳纤维的反应腐蚀,采用电镀工艺结合超声辅助振荡分散法,在碳纤维表面制备了均匀、光滑、连续的Cu界面层。通过真空压力浸渗法制备了碳纤维增强铝基复合材料。微观组织结构分析表明,Cu界面层的引入,使得所制备的复合材料中碳纤维分散好、基体致密度高、Al熔体能很好地浸渗到碳纤维束丝中形成结合良好的碳纤维-基体界面;同时,Cu界面层的引入可以避免Al熔体对碳纤维的腐蚀。力学性能测试表明,与工业纯Al相比,当碳纤维的体积分数为8%时,材料的拉伸强度可以提高143%。断口分析表明,在拉应力作用下,碳纤维-基体复合区域的碳纤维在Al基体中发生了滑移或拔出,因此在碳纤维的滑移和拔出过程中裂纹扩展被抑制,从而大大提高铝基复合材料的强度。

关键词 碳纤维铝基复合材料界面层力学性能微观结构    
Abstract

Carbon fiber-reinforced aluminum matrix composite has been considering as an ideal structural material for aerospace and automotive industries due to its high specific strength, high specific modulus, high thermal and electric conductivity as well as low coefficient of thermal expansion. However, for the fabrication of carbon fiber-reinforced aluminum matrix composites, the critical issues are the poor wettability and chemical reaction between carbon fibers and aluminum matrix. In order to improve the wetting behavior and prevent the chemical reaction between carbon fibers and the aluminum matrix, the electroplating technology assisted with ultra-sonic vibration dispersion method was applied to fabricate the copper interphase on the carbon fibers. It was found that a smooth, continuous copper interphase with homogeneous thickness could be deposited on carbon fibers. The carbon fiber-reinforced aluminum matrix composite (Cf/Al) was fabricated by the melt-infiltration process under pressure and vacuum conditions. The microstructure observations found that the carbon fibers homogeneously dispersed in the aluminum matrix by the introduction of copper interphase. There was no obvious carbon fiber damage caused by the reaction between carbon fibers and Al matrix. When the volume fraction of carbon fibers was 8%, the density of Cf/Al was about 2.70 g/cm3. Compared with pure Al, the mean tensile stress of Cf/Al composite was increased from 59.1 MPa to 144.9 MPa, which increased by 143%. The observation of fracture surfaces revealed the occurrence of the sliding and pull out of carbon fibers under tensile stress. The sliding and pull-out of carbon fibers can refrain the crack initiation and propagation of micro-cracks in the Al matrix. Therefore, the tensile strength of Cf/Al composite was improved significantly.

Key wordscarbon fiber    aluminum matrix composite    interphase    mechanical property    microstructure
收稿日期: 2018-07-12     
ZTFLH:  TB331  
基金资助:国家自然科学基金委员会与中国工程物理研究院联合基金项目(U1630129)
作者简介: 吕钊钊,男,1990年生,博士
图1  碳纤维表面电镀Cu界面层实验装置示意图
图2  采用真空压力浸渗法制备碳纤维增强铝基(Cf/Al)复合材料的工艺示意图
图3  碳纤维表面微观形貌及Cu界面层
图4  碳纤维表面Cu界面层微观形貌
图5  Cf/Al复合材料的微观形貌
图6  纯Al和Cf/Al复合材料的XRD谱
图7  Cf/Al复合材料的界面形貌及界面区域Cu元素面分布
图8  纯Al和Cf/Al复合材料拉伸工程应力-应变曲线
图9  Cf/Al复合材料断口形貌
[1] Sun D W, Zhang G Y, Zhang Q X, et al. Application of graphite fiber reinforced aluminum matrix composite to body tube structure in space remote sensor [J]. Optics Precis. Eng., 2009, 17: 368
[1] 孙德伟, 张广玉, 张其馨等. 石墨纤维增强铝基复合材料在空间遥感器镜筒结构中的应用 [J]. 光学精密工程, 2009, 17: 368
[2] Rawal S P. Metal-matrix composites for space applications [J]. JOM, 2001, 53(4): 14
[3] Kaczmar J W, Pietrzak K, W?osiński W. The production and application of metal matrix composite materials [J]. J. Mater. Process. Technol., 2000, 106: 58
[4] Prasad S V, Asthana R. Aluminum metal-matrix composites for automotive applications: Tribological considerations [J]. Tribol. Lett., 2004, 17: 445
[5] Deng C F, Zhang X X, Wang D Z. Chemical stability of carbon nanotubes in the 2024Al matrix [J]. Mater. Lett., 2007, 61: 904
[6] Shirvanimoghaddam K, Hamim S U, Karbalaei Akbari M, et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties [J]. Composites, 2017, 92A: 70
[7] Wang X, Jiang D M, Wu G H, et al. Effect of Mg content on the mechanical properties and microstructure of Grf/Al composite [J]. Mater. Sci. Eng., 2008, A497: 31
[8] Zhang S F, Chen G Q, Pei R S, et al. Effect of Gd content on interfacial microstructures and mechanical properties of Cf/Mg composite [J]. Mater. Des., 2015, 65: 567
[9] Singh B B, Balasubramanian M. Processing and properties of copper-coated carbon fibre reinforced aluminium alloy composites [J]. J. Mater. Process. Technol., 2009, 209: 2104
[10] Zhang J J, Liu S C, Zhang Y X, et al. Fabrication of woven carbon fibers reinforced Al-Mg (95-5 wt%) matrix composites by an electromagnetic casting process [J]. J.Mater. Process. Technol., 2015, 226: 78
[11] Hajjari E, Divandari M, Mirhabibi A R. The effect of applied pressure on fracture surface and tensile properties of nickel coated continuous carbon fiber reinforced aluminum composites fabricated by squeeze casting [J]. Mater. Des., 2010, 31: 2381
[12] Tang Y P, Deng Y D, Zhang K, et al. Improvement of interface between Al and short carbon fibers by α-Al2O3 coatings deposited by sol-gel technology [J]. Ceram. Int., 2008, 34: 1787
[13] Ure?a A, Rams J, Escalera M D, et al. Characterization of interfacial mechanical properties in carbon fiber/aluminium matrix composites by the nanoindentation technique [J]. Compos. Sci. Technol., 2005, 65: 2025
[14] Suzuki T, Umehara H, Hayashi R, et al. Mechanical properties and metallography of aluminum matrix composites reinforced by the Cu- or Ni-plating carbon multifilament [J]. J. Mater. Res., 1993, 8: 2492
[15] Hua Z S, Liu Y H, Yao G C, et al. Preparation and characterization of nickel-coated carbon fibers by electroplating [J]. J. Mater. Eng. Perform., 2012, 21: 324
[16] Liu S J, Cui C X, Qi Y M, et al. Surface treating technology of carbon fibers [J]. Mater. Sci. Technol., 2008, 16: 840
[16] 刘双进, 崔春翔, 戚玉敏等. 碳纤维表面电镀铜工艺的研究 [J]. 材料科学与工艺, 2008, 16: 840
[17] Vijayaram T R, Sulaiman S, Hamouda A M S, et al. Fabrication of fiber reinforced metal matrix composites by squeeze casting technology [J]. J. Mater. Proc. Technol., 2006, 178: 34
[18] Alhashmy H A, Nganbe M. Laminate squeeze casting of carbon fiber reinforced aluminum matrix composites [J]. Mater. Des., 2015, 67: 154
[19] Shi Q Y, Cao X, Li J Y, et al. Improved mechanical properties in friction stir processed carbon fiber reinforced aluminum composites [J].J. Tsinghua Univ(Sci. Technol.), 2017, 57: 792
[19] 史清宇, 曹 雄, 李积元等. FSP制备碳纤维增强铝基复合材料的强韧化机理 [J]. 清华大学学报(自然科学版), 2017, 57: 792
[20] Tao Z H, He W, Wang S X, et al. Synergistic effect of different additives on microvia filling in an acidic copper plating solution [J].J. Electrochem. Soc., 2016, 163: D379
[21] Shi D L, Lian J, He P, et al. Plasma coating of carbon nanofibers for enhanced dispersion and interfacial bonding in polymer composites [J]. Appl. Phys. Lett., 2003, 83: 5301
[22] Jiang H G, Dai J Y, Tong H Y, et al. Interfacial reactions on annealing Cu/Al multilayer thin films [J]. J. Appl. Phys., 1993, 74: 6165
[23] Oh S I, Lim J Y, Kim Y C, et al. Fabrication of carbon nanofiber reinforced aluminum alloy nanocomposites by a liquid process [J]. J. Alloys Compd., 2012, 542: 111
[24] Silvain J F, Proult A, Lahaye M, et al. Microstructure and chemical analysis of C/Cu/Al interfacial zones [J]. Composites, 2003, 34A: 1143
[25] Tanaka Y, Kajihara M. Numerical analysis for migration of interface between liquid and solid phases during reactive diffusion in the binary Cu-Al system [J]. Mater. Sci. Eng., 2007, A459: 101
[26] Tanaka Y, Kajihara M, Watanabe Y. Growth behavior of compound layers during reactive diffusion between solid Cu and liquid Al [J]. Mater. Sci. Eng., 2007, A445-446: 355
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.