Please wait a minute...
金属学报  2018, Vol. 54 Issue (8): 1122-1130    DOI: 10.11900/0412.1961.2018.00011
  本期目录 | 过刊浏览 |
Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ /α中沉淀析出的动力学
张可1,2(), 孙新军3, 张明亚1,2, 李昭东3, 叶晓瑜4, 朱正海1,2, 黄贞益1,2, 雍岐龙3
1 安徽工业大学冶金工程学院 马鞍山 243032
2 安徽工业大学冶金减排与资源综合利用教育部重点实验室 马鞍山 243032
3 钢铁研究总院工程用钢所 北京 100081
4 攀钢集团有限公司钒钛资源综合利用国家重点实验室 攀枝花 617000
Kinetics of (Ti, V, Mo)C Precipitated in γ /α Matrix of Ti-V-Mo Complex Microalloyed Steel
Ke ZHANG1,2(), Xinjun SUN3, Mingya ZHANG1,2, Zhaodong LI3, Xiaoyu YE4, Zhenghai ZHU1,2, Zhenyi HUANG1,2, Qilong YONG3
1 School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243032, China
2 Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, Anhui University of Technology, Maanshan 243032, China;
3 Institute of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
4 State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua Group Co., Ltd., Panzhihua 617000, China
引用本文:

张可, 孙新军, 张明亚, 李昭东, 叶晓瑜, 朱正海, 黄贞益, 雍岐龙. Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ /α中沉淀析出的动力学[J]. 金属学报, 2018, 54(8): 1122-1130.
Ke ZHANG, Xinjun SUN, Mingya ZHANG, Zhaodong LI, Xiaoyu YE, Zhenghai ZHU, Zhenyi HUANG, Qilong YONG. Kinetics of (Ti, V, Mo)C Precipitated in γ /α Matrix of Ti-V-Mo Complex Microalloyed Steel[J]. Acta Metall Sin, 2018, 54(8): 1122-1130.

全文: PDF(852 KB)   HTML
摘要: 

根据多元复合析出相的固溶析出理论和经典形核长大动力学理论,计算了Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在奥氏体(γ)和铁素体(α)中沉淀析出的形核参量、析出-时间-温度(PTT)曲线、形核率-温度(NrT)曲线,并探讨了奥氏体中形变储能和形变诱导析出量对(Ti, V, Mo)C在γ /α中沉淀析出动力学的影响。结果表明,复合析出相(Ti, V, Mo)C在γ /α中沉淀析出的PTT曲线呈典型的“C”曲线形状,而NrT曲线表现为典型的反“C”曲线形状,(Ti, V, Mo)C在γ中的最快析出温度为1020~1050 ℃。增加γ的形变储能,使(Ti, V, Mo)C在γ中沉淀析出的PTT曲线向左上方移动。增加γ中(Ti, V, Mo)C沉淀析出的形变诱导析出量,使(Ti, V, Mo)C在α中沉淀析出的NrT曲线向右下方移动,经计算可知,(Ti, V, Mo)C在α中的最大形核率温度在630~650 ℃,理论计算结果和实验结果吻合较好。

关键词 (Ti,V,Mo)CPTT曲线NrT曲线动力学理论计算    
Abstract

In recent years, in order to develop the higher strength steel, the idea of increasing the strength of the hot rolled ferritic steel via complex Ti microalloyed technology has been widely accepted and applied, such as Ti-Nb, Ti-Mo, Ti-Nb-Mo and Ti-V-Mo. It is important to know the thermodynamics and kinetics of complex Ti contained precipitates for controlling the precipitation behavior of carbides and improving the mechanical properties of complex Ti microalloyed steels. In this work, according to the classical nulceation and growth kinetics theory and the solubility products of various carbides in austenite/ferrite (γ /α) matrix, the precipitation-time-temperature (PTT) curve, nucleation-time (NrT) curve and the nucleation parameters of (Ti, V, Mo)C carbides in γ /α matrix of Ti-V-Mo complex microalloyed steel were obtained through the theoretical calculation. Moreover, the effects of deformation stored energy and the amount of strain-induced precipitation in γ matrix on the precipitation kinetics of (Ti, V, Mo)C were discussed. The results showed that the PTT diagrams of (Ti, V, Mo)C in γ /α matrix showed "C" shape curve, while the NrT curves showed inverse "C" shape curve. The nose temperature of (Ti, V, Mo)C in γ matrix is about 1020~1050 ℃. Increasing the deformation stored energy of γ matrix moves the PPT curve to the upper left. In addition, the NrT curve of (Ti, V, Mo)C precipitated in α matrix moves towards to the lower right by properly increasing the amount of strain-induced precipitation in γ matrix. The maximum nucleation rate temperature of (Ti, V, Mo)C in ferrite is around 630~650 ℃ from the theoretical calculation, which agrees well with the result of experimental observation.

Key words(Ti,V,Mo)C    PTT curve    NrT curve    kinetics    theoretical calculation
收稿日期: 2018-01-10     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目Nos.51704008和51674004,国家重点研发计划项目Nos.2017YFB0305100和2017YFB0304700,国家重点基础研究计划项目No.2015CB654803,中国钢研科技集团有限公司科技基金项目No.15G60530A,安徽工业大学青年科研基金项目No.QZ201603及钒钛资源综合利用国家重点实验室开放基金项目No.18100009
作者简介:

作者简介 张 可,男,1983年生,博士

Element Qγ / kJ Qα / kJ
Ti 251 248
V 264 241
Mo 240 229
表1  Ti、V和Mo元素在γ和α中的扩散激活能[15]
Carbide Lattice constant / nm Linear expansion coefficient / K-1
TiC 0.4318[21] 7.86×10-6 [21]
VC 0.4182[21] 8.29×10-6 [21]
MoC 0.4277[23] 6.88×10-6 [24]
表2  TiC、VC和MoC在室温下的点阵常数及线膨胀系数[21,23,24]
图1  Ti-V-Mo钢中微合金元素平衡固溶量[Ti]、[V]、[Mo]和[C]随温度的变化
Temperature 0 Jmol-1 1360 Jmol-1 3820 Jmol-1
dd*/ nm lg(I/K)d lg(t0.05/t0) dd*/ nm lg(I/K)d lg(t0.05/t0) dd*/ nm lg(I/K)d lg(t0.05/t0)
800 0.46 -15.180 20.83 0.41 -15.07 20.72 0.30 -15.13 20.78
850 0.55 -15.125 20.18 0.49 -14.86 19.91 0.39 -14.65 19.71
900 0.62 -15.135 19.62 0.55 -14.72 19.20 0.45 -14.34 18.82
950 0.67 -15.041 18.98 0.59 -14.53 18.47 0.48 -14.04 17.98
1000 0.73 -15.043 18.49 0.64 -14.40 17.84 0.51 -13.78 17.23
1050 0.83 -15.519 18.53 0.72 -14.56 17.57 0.57 -13.66 16.67
1100 1.02 -17.024 19.64 0.87 -15.30 17.92 0.66 -13.77 16.39
1150 1.37 -21.270 23.54 1.11 -17.38 19.65 0.80 -14.31 16.58
1200 2.17 -36.908 38.85 1.58 -23.73 25.68 1.04 -15.89 17.84
表3  不同形变储能下(Ti, V, Mo)C在奥氏体中形核参量的计算结果
图2  (Ti, V, Mo)C在奥氏体中析出的NrT和PTT曲线
Material Carbide Method Tf / ℃ Ref.
0.04C-0.1Ti-0.5Mn TiC Stress relaxation 910 [31]
0.04C -0.1Ti-1.5Mn TiC Stress relaxation 890 [32]
0.04C -0.10Ti-0.21Mo-1.60Mn (Ti, Mo)C Stress relaxation 925 [32]
0.31C-0.015Ti-0.04Nb-0.09V-0.43Mo-1.6Mn (Ti, V, Nb)C Stress relaxation 940 [33]
0.08C-0.02Ti-0.067Nb-0.056V-1.85Mn (Ti, V, Nb)C Electrical resistivity 950 [34]
0.10C-0.12Ti-1.60Mn TiC Flow curve 1025 [36]
0.18C-0.13V-0.036Ti-1.5Mn (Ti, V)(C, N) Stress relaxation 1040 [37]
0.16C-0.2Ti-0.4V-0.4Mo-1.0Mn (Ti, V, Mo)C Theoretical calculation 1050 Present work
表4  不同Ti微合金钢中碳化物在奥氏体中的最快析出温度
Temperature 10% 30% 50%
lg(I/K)d lg(t0.05/t0) lg(I/K)d lg(t0.05/t0) lg(I/K)d lg(t0.05/t0)
500 -17.19 27.94 -17.11 27.82 -16.83 27.44
550 -16.72 26.44 -16.63 26.31 -16.35 25.95
600 -16.40 25.21 -16.31 25.08 -16.07 24.77
650 -16.25 24.24 -16.19 24.15 -16.03 23.93
700 -16.32 23.57 -16.33 23.55 -16.30 23.48
750 -16.70 24.30 -16.84 23.32 -17.06 24.58
800 -17.59 25.58 -17.99 23.96 -18.63 24.56
表5  形变诱导析出量为10%、30%和50%时(Ti, V, Mo)C在铁素体中形核参量的计算结果
图3  形变诱导析出量对(Ti, V, Mo)C在铁素体中沉淀析出的NrT和PTT曲线的影响
图4  Ti-V-Mo钢、Ti-Mo钢和Ti钢在不同卷取温度下的硬度
[1] Chen J, Lü M Y, Tang S, et al.Microstructure, mechanical properties and interphase precipitation behaviors in V-Ti microalloyed steel[J]. Acta Metall. Sin., 2014, 50: 524(陈俊, 吕梦阳, 唐帅等. V-Ti微合金钢的组织性能及相间析出行为[J]. 金属学报, 2014, 50: 524)
[2] Mukherjee S, Timokhina I, Zhu C, et al.Clustering and precipitation processes in a ferritic titanium-molybdenum microalloyed steel[J]. J. Alloys Compd., 2017, 690: 621
[3] Zhang K, Li Z D, Wang Z Q, et al.Precipitation behavior and mechanical properties of hot-rolled high strength Ti-Mo-bearing ferritic sheet steel: The great potential of nanometer-sized (Ti, Mo)C carbide[J]. J. Mater. Res., 2016, 31: 1254
[4] Zhang K, Li Z D, Sun X J, et al.Development of Ti-V-Mo complex microalloyed hot-rolled 900-MPa-grade high-strength steel[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 641
[5] Zhang K, Yong Q L, Sun X J, et al.Effect of coiling temperature on micro-structure and mechanical properties of Ti-V-Mo complex microalloyed ultra-high strength steel[J]. Acta Metall. Sin., 2016, 52: 529(张可, 雍岐龙, 孙新军等. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响[J]. 金属学报, 2016, 52: 529)
[6] Chun E J, Do H, Kim S, et al.Effect of nanocarbides and interphase hardness deviation on stretch-flangeability in 998 MPa hot-rolled steels[J]. Mater. Chem. Phys., 2013, 140: 307
[7] Yi H L, Du L X, Wang G D, et al.Development of Nb-V-Ti hot-rolled high strength steel with fine ferrite and precipitation strengthening[J]. J. Iron Steel Res. Int., 2009, 16: 72
[8] Chen C Y, Chen C C, Yang J R.Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti-Nb and Ti-Nb-Mo steel[J]. Mater. Charact., 2014, 88: 69
[9] Zhang K, Yong Q L, Sun X J, et al.Effect of tempering temperature on micro-structure and mechanical properties of high Ti microalloyed directly quenched high strength steel[J]. Acta Metall. Sin., 2014, 50: 913(张可, 雍岐龙, 孙新军等. 回火温度对高Ti微合金直接淬火高强钢组织及性能的影响[J]. 金属学报, 2014, 50: 913)
[10] Jang J H, Heo Y U, Lee C H, et al.Interphase precipitation in Ti-Nb and Ti-Nb-Mo bearing steel[J]. Mater. Sci. Technol., 2013, 29: 309
[11] Strid J, Easterling K E.On the chemistry and stability of complex carbides and nitrides in microalloyed steels[J]. Acta Metall., 1985, 33: 2057
[12] Adrian H.Thermodynamic model for precipitation of carbonitrides in high strength low alloy steels containing up to three microalloying elements with or without additions of aluminium[J]. Mater. Sci. Technol., 1992, 8: 406
[13] Rios P R.Expression for solubility product of niobium carbonitride in austenite[J]. Mater. Sci. Technol., 1988, 4: 324
[14] Rios P R.Method for the determination of mole fraction and composition of a multicomponent f.c.c. carbonitride[J]. Mater. Sci. Eng., 1991, A142: 87
[15] Yong Q L.Secondary Phases in Steel [M]. Beijing: Metallurgical Industry Press, 2006: 1(雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 1)
[16] Cao J C.Study on the precipitation of carbontride Nb-Mo complex microalloyed steel [D]. Kunming: Kunming University of Science and Technology, 2006(曹建春. 铌钼复合微合金钢中碳氮化物沉淀析出研究 [D]. 昆明: 昆明理工大学, 2006)
[17] Yang G W.Study on controlling the refinement and mechanism of microstructure of a novel ultrahigh strength martensitic steel [D]. Kunming: Kunming University of Science and Technology, 2013(杨庚蔚. 新型超高强度马氏体钢组织超细化控制技术及机理研究 [D]. 昆明: 昆明理工大学, 2013)
[18] Chen H Y, Liu S L, Liu S, et al.Thermodynamic calculation model and analysis of complex carbonitride precipitation behavior in low alloyed steel containing Mo[J]. Trans. Mater. Heat Treat., 2014, 35(6): 207(陈泓业, 刘胜利, 刘爽等. 含Mo低合金钢复合碳氮化物的析出热力学计算模型及分析[J]. 材料热处理学报, 2014, 35(6): 207)
[19] Yong Q L, Chen M X, Pei H Z, et al.Theoretical calculation for PTT curve of microalloy carbonitride precipitated in ferrite[J]. J. Iron Steel Res., 2006, 18(3): 30(雍岐龙, 陈明昕, 裴和中等. 微合金碳氮化物在铁素体中沉淀析出的PTT曲线的理论计算[J]. 钢铁研究学报, 2006, 18(3): 30)
[20] Yen H W, Chen C Y, Wang T Y, et al.Orientation relationship transition of nanometre sized interphase precipitated TiC carbides in Ti bearing steel[J]. Mater. Sci. Technol., 2013, 26: 421
[21] Zhang K.Study on microstructure tailoring and strengthening mechanisms of Ti-V-Mo complex microalloyed high strength steel [D]. Kunming: Kunming University of Science and Technology, 2016(张可. Ti-V-Mo复合微合金化高强度钢组织调控与强化机理研究 [D]. 昆明: 昆明理工大学, 2016)
[22] Liu W J, Jonas J J.A stress relaxation method for following carbonitride precipitation in austenite at hot working temperatures[J]. Metall. Trans., 1988, 19A: 1403
[23] Willens R H, Buehler E, Matthias B T.Superconductivity of the transition-metal carbides[J]. Phys. Rev., 1967, 159: 327
[24] Krasnenko V, Brik M G.First-principles calculations of hydrostatic pressure effects on the structural, elastic and thermodynamic properties of cubic monocarbides XC (X=Ti, V, Cr, Nb, Mo, Hf)[J]. Solid State Sci., 2012, 14: 1431
[25] Irvine K J, Pickering F B, Gladman T.Grain-refined C-Mn steels[J]. J. Iron Steel Inst., 1967, 205: 161
[26] Narita K.Physical chemistry of the groups IVa(Ti, Zr), Va(V, Nb, Ta) and the rare earth elements in steel[J]. Trans. Iron Steel Inst. Jpn., 1975, 15: 145
[27] Pavlina E J, Speer J G, Van Tyne C J. Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron[J]. Scr. Mater., 2012, 66: 243
[28] Taylor K A.Solubility products for titanium-, vanadium-, and niobium-carbide in ferrite[J]. Scr. Metall. Mater., 1995, 32: 7
[29] Koyama S, Ishii T, Narita K.Solubility of vanadium carbide and nitride in ferritic iron[J]. J. Jpn. Inst. Met., 1973, 37: 191
[30] Wang Z D, Qu J B, Liu X H, et al.Investigation of strain-induced precipitation behavior in a microalloying steel by stress relaxation method[J]. Acta Metall. Sin., 2000, 36: 618(王昭东, 曲锦波, 刘相华等. 松弛法研究微合金钢碳氮化物的应变诱导析出行为[J]. 金属学报, 2000, 36: 618)
[31] Wang Z Q, Mao X P, Yang Z G, et al.Strain-induced precipitation in a Ti micro-alloyed HSLA steel[J]. Mater. Sci. Eng., 2011, A529: 459
[32] Wang Z Q.Precipitation behavior in Ti microalloyed steel and the effects of Mn and Mo [D]. Beijing: Tsinghua University, 2013(王振强. Ti微合金钢中的析出行为与合金元素Mn和Mo的影响 [D]. 北京: 清华大学, 2013)
[33] Liu S, Tang G B, Li J G, et al.Strengthening mechanism and precipitation of complex MC particles in ultra-high strength steel[J]. Iron Steel, 2014, 49(3): 68(刘爽, 唐广波, 李激光等. 超高强度钢中复合MC型颗粒的沉淀析出及强化机制[J]. 钢铁, 2014, 49(3): 68)
[34] Jung J G, Park J S, Kim J, et al.Carbide precipitation kinetics in austenite of a Nb-Ti-V microalloyed steel[J]. Mater. Sci. Eng., 2011, A528: 5529
[35] Wang Z Q, Yong Q L, Sun X J, et al.An analytical model for the kinetics of strain-induced precipitation in titanium micro-alloyed steels[J]. ISIJ Int., 2012, 52: 1661
[36] Akben M G, Weiss I, Jonas J J.Dynamic precipitation and solute hardening in a V microalloyed steel and two Nb steels containing high levels of Mn[J]. Acta Metall., 1981, 29: 111
[37] Pandit A, Murugaiyan A, Podder A S, et al.Strain induced precipitation of complex carbonitrides in Nb-V and Ti-V microalloyed steels[J]. Scr. Mater., 2005, 53: 1309
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[3] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[5] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[6] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[7] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[8] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[9] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[10] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[11] 许坤, 王海川, 孔辉, 吴朝阳, 张战. 一种新分组团簇动力学模型模拟铝合金中的Al3Sc析出[J]. 金属学报, 2021, 57(6): 822-830.
[12] 侯玉柏, 于月光, 郭志猛. W-Ni-Fe三元合金等离子球化过程的SPH仿真研究[J]. 金属学报, 2021, 57(2): 247-256.
[13] 朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
[14] 刘峰, 王天乐. 基于热力学和动力学协同的析出相模拟[J]. 金属学报, 2021, 57(1): 55-70.
[15] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.