Please wait a minute...
金属学报  2018, Vol. 54 Issue (8): 1094-1104    DOI: 10.11900/0412.1961.2017.00472
  本期目录 | 过刊浏览 |
2205钢在模拟深海热液区中的腐蚀行为
屈少鹏1(), 程柏璋1, 董丽华1, 尹衍升1, 杨丽景2
1 上海海事大学海洋科学与工程学院 上海 201306
2 中国科学院宁波材料技术与工程研究所中国科学院海洋新材料与应用技术重点实验室 宁波 315201
Corrosion Behavior of 2205 Steel in Simulated Hydrothermal Area
Shaopeng QU1(), Baizhang CHENG1, Lihua DONG1, Yansheng YIN1, Lijing YANG2
1 College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
2 Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
引用本文:

屈少鹏, 程柏璋, 董丽华, 尹衍升, 杨丽景. 2205钢在模拟深海热液区中的腐蚀行为[J]. 金属学报, 2018, 54(8): 1094-1104.
Shaopeng QU, Baizhang CHENG, Lihua DONG, Yansheng YIN, Lijing YANG. Corrosion Behavior of 2205 Steel in Simulated Hydrothermal Area[J]. Acta Metall Sin, 2018, 54(8): 1094-1104.

全文: PDF(7107 KB)   HTML
摘要: 

利用交流阻抗法、线性极化法、动电位极化法及Mott-Schottky分析法,研究了2205钢在不同温度、20 MPa静水压的3.5%NaCl溶液中的电化学性质,通过SEM、EDS及白光干涉仪分析了电化学测试后2205钢的腐蚀形貌及腐蚀产物。结果表明,在模拟深海热液区环境中,2205钢在25 ℃下具有良好的耐点蚀能力;溶液温度达到65 ℃时,2205钢表面会出现明显的点蚀现象;溶液温度达到150和200 ℃时,2205钢表面会产生裂纹状点蚀坑;65 ℃时,点蚀坑主要发生在奥氏体相内,100~200 ℃时,点蚀坑主要发生在铁素体相内。随着模拟深海热液区温度的升高,2205钢的电化学阻抗及线性极化电阻先减小后增大,且在150 ℃的电化学阻抗及线性极化电阻最小;2205钢的点蚀电位随着温度的升高先负移后正移,其在模拟深海热液区中生成的钝化膜载流子密度随着温度的升高而增大。

关键词 2205钢热液区温度腐蚀电化学    
Abstract

Deep-sea hydrothermal area has a lot of mineral resources, and study the corrosion behavior of metal in deep-sea hydrothermal area is useful for marine resource development. Electrochemical impedance spectroscopy, linear polarization, potentiodynamic polarization and Mott-Schottky analysis were used to study the electrochemical properties of 2205 steel in 20 MPa hydrostatic pressure 3.5%NaCl solution with different temperatures. Corrosion morphologies and corrosion products of 2205 steel after electrochemical tests were analyzed by SEM, EDS and white light interferometry. The results show that 2205 steel has good pitting resistance under 25 ℃ in simulated hydrothermal area, pit occurred on the surface of 2205 steel after the solution temperature reaching 65 ℃, crack-shaped pit occurred on the surface of 2205 steel under 150 and 200 ℃. Pit occurs in austenite phase at 65 ℃, and occurs in ferrite phase at 100~200 ℃. Impedance and linear polarization resistance of 2205 steel first decrease and then increase with temperature increasing in simulated hydrothermal area, and impedance and linear polarization resistance under 150 ℃ are lowest. Pitting potential of 2205 steel first negative shift and then positive shift, and carrier density of passive film formed in simulated hydrothermal area increase with temperature increasing.

Key words2205 steel    hydrothermal area    temperature    corrosion    electrochemistry
收稿日期: 2017-11-10     
ZTFLH:  TG172.5  
基金资助:国家自然科学基金项目No.51701115,国家重点基础研究发展计划项目No.2014CB643306以及中国科学院海洋新材料与应用技术重点实验室开放基金项目No.2016K04
作者简介:

作者简介 屈少鹏,男,1987年生,讲师,博士

图1  2205钢的OM像
图2  电化学测试系统示意图
图3  不同温度20 MPa静水压的3.5%NaCl溶液中2205钢开路电位的跟踪结果
图4  不同温度20 MPa静水压的3.5%NaCl溶液中2205钢的电化学交流阻抗谱(EIS)测试结果
图5  电化学交流阻抗的模拟等效电路(R(QR(RQ)))
Temperature Rs Qdl Rt Rpit Qpit
Ωcm2 Y0 / (10-4 Ssncm-2) n 103 Ωcm2 Ωcm2 Y0 / (10-4 Ssncm-2) n
25 8.16 0.61 0.806 15.20 520.0 3.34 0.381
65 5.93 1.16 0.796 4.58 330.0 3.52 0.532
100 6.25 3.96 0.522 3.46 10.8 0.25 0.912
150 1.76 4.79 0.536 1.47 13.7 0.27 1.000
200 1.05 3.00 0.298 3.59 470.0 1.15 0.612
表1  2205钢试样在不同温度20 MPa静水压下3.5%NaCl溶液中的EIS拟合结果
图6  不同温度20 MPa静水压的3.5%NaCl溶液中2205钢的线性极化结果
图7  20 MPa静水压的3.5%NaCl溶液中2205钢的动电位极化曲线
Temperature Ecorr Eb Ep ip
V V V 10-4 Acm-2
25 -0.504 0.964 0.288 1.00
65 -0.381 0.683 -0.121 2.65
100 -0.290 0.157 -0.062 2.43
150 -0.179 0.208 -0.070 2.29
200 -0.375 0.701 -0.207 4.38
表2  不同温度20 MPa静水压下3.5%NaCl溶液中2205钢试样的腐蚀电化学参数
图8  不同温度20 MPa静水压的3.5%NaCl溶液中2205钢的Mott-Schottky曲线
Temperature ND NA
1022 cm-3 1022 cm-3
25 10.60 15.53
65 24.36 48.65
100 20.90 37.91
150 68.49 -
200 81.96 -
表3  2205钢试样在不同温度20 MPa静水压下3.5%NaCl溶液中形成的钝化膜的载流子浓度
图9  2205钢在不同温度20 MPa静水压的3.5%NaCl溶液中腐蚀后的表面形貌
图10  2205钢在不同温度20 MPa静水压的3.5%NaCl溶液中腐蚀后表面的背散射电子像
图11  不同温度20 MPa静水压的3.5%NaCl溶液中2205钢电化学测试后点蚀坑白光干涉分析结果
Position Ni Si Mo Cr Fe O
2205 8.23 0.96 3.15 22.13 63.92
Ferrite 7.30 1.04 3.67 23.24 64.75
Austenite 11.45 0.88 2.94 20.89 63.85
65 ℃-out 8.26 0.89 2.99 22.30 61.16 ?
100 ℃-out 8.30 1.15 3.29 22.34 60.22 ?
150 ℃-out 10.03 0.97 2.37 19.84 62.88 ?
200 ℃-out 10.36 1.19 3.11 24.21 42.99 13.05
65 ℃-pit 13.58 2.04 2.02 20.53 52.62 ?
100 ℃-pit 12.47 0.84 2.30 19.74 60.64 ?
150 ℃-pit 1.11 0.21 1.14 29.35 68.18 ?
200 ℃-pit 2.60 0.33 1.38 40.39 50.85 3.31
表4  2205钢试样在不同温度20 MPa静水压下3.5%NaCl溶液中腐蚀后腐蚀表面的EDS结果
[1] Spiess F N, Macdonald K C, Atwater T, et al.East pacific rise: Hot springs and geophysical experiments[J]. Science, 1980, 207: 1421
[2] Haymon R M, Macdonald K C.The geology of deep-sea hot springs[J]. Am. Sci., 1985, 73: 441
[3] Feng J, Li J H, Chen Z, et al.A review on "black smokers" and its implication for origin of life[J]. Acta Sci. Nat. Univ. Peking, 2004, 40: 318(冯军, 李江海, 陈征等. “海底黑烟囱”与生命起源述评[J]. 北京大学学报(自然科学版), 2004, 40: 318)
[4] Zeng Z G, Liu C H, Yin X B, et al.Initial findings of first global voyage of Dayang No. 1 (DY105-17A) in East Pacific Rise[J]. Acta Mineral. Sin., 2007, 27(suppl.): 369(曾志刚, 刘长华, 殷学博等. 大洋一号首次环球航次(DY105-17A)在东太平洋海隆的初步调查结果[J]. 矿物学报, 2007, 27(增刊): 369)
[5] Wu Z W, Sun X M, Dai Y Z, et al.The discovery of native gold in massive sulfidesfrom the Edmond hydrothermal field, Central Indian Ridge and its significance[J]. Acta Petrol. Sin., 2011, 27: 3749(吴仲玮, 孙晓明, 戴瑛知等. 中印度洋海岭Edmond热液区块状硫化物中自然金的发现及其意义[J]. 岩石学报, 2011, 27: 3749)
[6] Guo J J, Yu Z H, Li H M.Rare earth elements in the sediments from Baoshishan hydrothermal field near the Galapagos microplate[J]. Period. Ocean Univ. China, 2013, 43(12): 66(郭静静, 于增慧, 李怀明. Galapagos微板块附近宝石山热液区沉积物稀土元素组成特征[J]. 中国海洋大学学报, 2013, 43(12): 66)
[7] Zhang Y.Study on welding structure stress corrosion fatigue properties of 2205 duplex stainless steel [D]. Chongqing: Chongqing Jiaotong University, 2013(张瑶. 2205双相不锈钢焊接结构应力腐蚀疲劳性能研究 [D]. 重庆: 重庆交通大学, 2013)
[8] Fan Q Q, Hua L.Influence factor of corrosion behavior of 2205 duplex stainless steel[J]. Corros. Sci. Prot. Technol., 2014, 26: 178(范强强, 华丽. 2205双相不锈钢腐蚀行为的影响因素[J]. 腐蚀科学与防护技术, 2014, 26: 178)
[9] Feng H, Zhou X Y, Liu H, et al.Development and trend of hyper duplex stainless steels[J]. J. Iron Steel Res., 2015, 27(4): 1(丰涵, 周晓玉, 刘虎等. 特超级双相不锈钢的发展现状及趋势[J]. 钢铁研究学报, 2015, 27(4): 1)
[10] Cheng B Z, Qu S P, Dong L H, et al. The influence of hydrostatic pressure on the corrosion electrochemistry characters of2205 steel in deep sea environment[J]. Corros. Prot., 2018, 39: doi: 10.11973/fsyfh-201811001(程柏璋, 屈少鹏, 董丽华等. 深海环境中静水压对2205钢腐蚀电化学性质的影响 [J]. 腐蚀与防护, 2018, 39: doi: 10.11973/fsyfh-201811001)
[11] Xu Y S, Xie H S, Guo J, et al.Conductivity of NaCl solution at 0.4-5.0 GPa and 25-500 ℃[J]. Sci. China, 1997, 27D: 398(徐有生, 谢鸿森, 郭捷等. 0.4~5.0 GPa和室温~500 ℃下NaCl溶液的电导率[J]. 中国科学, 1997, 27D: 133)
[12] Cao C N.On the theoretical errors of linear polarization techniques[J]. J. Chin. Soc. Corros. Prot., 1981, 1(2): 1(曹楚南. 线性极化电阻的理论误差及其纠正方法[J]. 中国腐蚀与防护学报, 1981, 1(2): 1)
[13] Wang F P, Jing H M, Xin C M.Electrochemistry of Corrosion [M]. 2nd Ed., Beijing: Chemical Industry Press, 2017: 199(王凤平, 敬和民, 辛春梅. 腐蚀电化学 [M]. 第2版, 北京: 化学工业出版社, 2017: 199)
[14] Cao C N.Principles of Electrochemistry of Corrosion [M]. 3rd Ed., Beijing: Chemical Industry Press, 2008: 127(曹楚南. 腐蚀电化学原理 [M]. 第3版, 北京: 化学工业出版社, 2008: 127)
[15] Han D, Jiang Y M, Deng B, et al.Effect of aging time on electrochemical corrosion behavior of 2101 duplex stainless steel[J]. Acta Metall. Sin., 2009, 45: 919(韩冬, 蒋益明, 邓博等. 时效时间对2101双相不锈钢电化学腐蚀行为的影响[J]. 金属学报, 2009, 45: 919)
[16] Dong C F, Xiao K, Chen T, et al.Characterization and comparison of conducting polyaniline synthesized by three different pathways[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2011, 26: 1068
[17] Du N, Tian W M, Zhao Q, et al.Pitting corrosion dynamics and mechanisms of 304 stainless steel in 3.5%NaCl solution[J]. Acta Metall. Sin., 2012, 48: 807(杜楠, 田文明, 赵晴等. 304不锈钢在3.5%NaCl溶液中的点蚀动力学及机理[J]. 金属学报, 2012, 48: 807)
[18] Schultze J W, Lohrengel M M.Stability, reactivity and breakdown of passive films. Problems of recent and future research[J]. Electrochim. Acta, 2000, 45: 2499
[19] Sikora E, Macdonald D D.Nature of the passive film on nickel[J]. Electrochim. Acta, 2002, 48: 69
[20] Cai W T, Zhao G X, Zhao D W, et al.Corrosion resistance and semiconductor properties of passive films formed on super 13Cr stainless steel[J]. J. Univ. Sci. Technol. Beijing, 2011, 33: 1226(蔡文婷, 赵国仙, 赵大伟等. 超级13Cr不锈钢的钝化膜耐蚀性与半导体特性[J]. 北京科技大学学报, 2011, 33: 1226)
[21] Kim J S, Cho E A, Kwon H S.Photoelectrochemical study on the passive film on Fe[J]. Corros. Sci., 2001, 43: 1403
[22] Zhang C X, Zhang Z H.Corrosion resistance of the passive films formed on the G3 nickel-base alloy in different conditions[J]. Baosteel Technol., 2008, 26(5): 35(张春霞, 张忠铧. G3镍基合金钝化膜的耐蚀性研究[J]. 宝钢技术, 2008, 26(5): 35)
[23] Wang C, Zhi Y M, Sheng M Q, et al.Semiconductor characters of passive film on AISI304 stainless steel surface in electrolytes during corrosion process[J]. Corros. Prot., 2009, 30: 369(王超, 支玉明, 盛敏奇等. AISI304不锈钢钝化膜在电解质溶液中腐蚀时的半导体性质[J]. 腐蚀与防护, 2009, 30: 369)
[24] Melchers R E.Pitting corrosion of mild steel in marine immersion environment-Part 2: Variability of maximum pit depth[J]. Corrosion, 2004, 60: 937
[25] Wang B C, Zhu J H.Semiconducting behaviors of passive films of stainless steel under ultrasonic cavitation[J]. Acta Metall. Sin., 2007, 43: 813(王保成, 朱金华. 超声空化下不锈钢钝化膜的半导行为[J]. 金属学报, 2007, 43: 813)
[26] Macdonald D D.The point defect model for the passive state[J]. J. Electrochem. Soc., 1992, 139: 3434
[27] Gao L, Wang B C.Influence of corrosion behaviors and semiconductor properties for passive film of SUS304 and SUS430 stainless steel by temperature[J]. J. Taiyuan Univ. Technol., 2015, 46: 268(高磊, 王保成. 温度对SUS304与SUS430不锈钢耐腐蚀性及其钝化膜半导体性能的影响[J]. 太原理工大学学报, 2015, 46: 268)
[28] Shu J.Investigation on corrosion resistance properties and formabilities of ferritic stainless steel used as aumotive exhaust system [D]. Shanghai: Shanghai Jiao Tong University, 2013(舒俊. 汽车排气系统用铁素体不锈钢耐蚀性能和成形性能的研究 [D]. 上海: 上海交通大学, 2013)
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[5] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[6] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[7] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[8] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[9] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[10] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[11] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[12] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[13] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[14] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[15] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.