Please wait a minute...
金属学报  2018, Vol. 54 Issue (2): 325-338    DOI: 10.11900/0412.1961.2017.00459
  本期目录 | 过刊浏览 |
ODS钢中氧化物/铁素体界面捕氢行为的第一原理研究
冯宇超1,2, 邢炜伟3, 王寿龙1,2, 陈星秋1(), 李殿中1, 李依依1
1 中国科学院金属研究所沈阳材料科学国家研究中心 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
3 中国科学院金属研究所 沈阳 110016
First-Principles Study of Hydrogen Behaviors at Oxide/Ferrite Interface in ODS Steels
Yuchao FENG1,2, Weiwei XING3, Shoulong WANG1,2, Xingqiu CHEN1(), Dianzhong LI1, Yiyi LI1
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(8124 KB)   HTML
摘要: 

通过第一原理计算系统研究了氧化物弥散强化钢(ODS钢)中H原子在氧化物析出相Y2TiO5和Y2Ti2O7间隙的占位能;计算了H在Y2Ti2O7/bcc-Fe界面的占位能,分析发现这些H原子占位均容易固溶在电荷密度较高的间隙位置。计算也进一步揭示,在界面处Fe空位更容易形成;H原子倾向于占据Y2Ti2O7/bcc-Fe界面中Fe相一侧,而He原子则容易占据氧化物一侧,这表明在ODS钢中H原子会优先被氧化物沉淀相与基体间界面所吸收。ODS钢中大量弥散析出的纳米氧化物与基体间的界面结构,客观上实现了H原子的有效分散,并能够将H团簇稳定在更细小的尺度;而且在界面H团簇长大过程中会吸收大量的H原子和空位,可能以此作为辐照离位损伤缺陷的自愈合点,从而解释了ODS钢优越的耐辐照损伤性能。同时,计算也尝试解释了H-He双粒子辐照对ODS钢辐照空洞的产生存在协同效应的实验结果。

关键词 ODS钢Y2Ti2O7/bcc-Fe界面H第一原理计算    
Abstract

Ferritic oxide dispersion strengthened (ODS) steels, which usually contain a very high density of nano-sized Y-Ti-O particles and oxide precipitates (Y2Ti2O7 or/and Y2TiO5), have been demonstrated to be a leading candidate for promising structural materials in advanced fission and fusion energy applications. By means of first-principles calculations, the defect formation energies and preference sites of hydrogen (H) and helium (He) atoms trapped in Y2Ti2O7, Y2TiO5 and Y2Ti2O7/bcc-Fe interface, were investigated. The calculations uncover that (1) H atoms prefer to occupy the interstitial sites with high pre-exsiting charge densities of Y2Ti2O7 and Y2TiO5, (2) the Y2Ti2O7/bcc-Fe interface trends to attract vacancies in bcc-Fe matrix because of its lower vacancy formation energies, (3) at the Y2Ti2O7/bcc-Fe interface, H at om prefers to occupy the interstitial sites around the bcc-Fe side while He atom prefers to occupy the interstitial sites around Y2Ti2O7 side. All these results demonstrate that both H and He atoms produced by nuclear transmutation reactions would be trapped by oxides precipitates and Y2Ti2O7/bcc-Fe interface in case of the formation of large bubbles. This implies that high density of nanometer-sized oxide precipitates and Y2Ti2O7/bcc-Fe interfaces in ODS steels effectively disperse H atoms and inhibit H clusters in finer size. Besides that, during the growth process of the finer H clusters at interfaces they trap a large number of both H atoms and vacancies, acting as self-healing sites for irradiation damage. These facts potentially corresponds to the excellent capability of ODS steels to resist irradiation damage. Moreover, the calculation results may also interpret the synergistic effect of irradiation damage produced by both H and He to ODS steels.

Key wordsODS steel    Y2Ti2O7/bcc-Fe interface    hydrogen    first-principles calculation
收稿日期: 2017-11-01     
基金资助:国家自然科学基金项目No.51474202
作者简介: 作者简介 冯宇超,男,1994年生,硕士生

引用本文:

冯宇超, 邢炜伟, 王寿龙, 陈星秋, 李殿中, 李依依. ODS钢中氧化物/铁素体界面捕氢行为的第一原理研究[J]. 金属学报, 2018, 54(2): 325-338.
Yuchao FENG, Weiwei XING, Shoulong WANG, Xingqiu CHEN, Dianzhong LI, Yiyi LI. First-Principles Study of Hydrogen Behaviors at Oxide/Ferrite Interface in ODS Steels. Acta Metall Sin, 2018, 54(2): 325-338.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00459      或      https://www.ams.org.cn/CN/Y2018/V54/I2/325

图1  Y2Ti2O7和Y2TiO5晶体结构
Method a / nm B / GPa
PAW-PBE 0.283 188
Calculated 0.276~0.287[48,49,50,51,52,53,54,55,56,57] 169~182[53~55,58~60]
Experimental 0.287[61] 168[62]
表1  bcc-Fe晶格常数和体模量
Method a / nm B / GPa
PAW-PBE 1.019 182
Calculated 1.000, 1.017, 209, 183,
1.020[63], 1.011[64] 181[63], 193[64]
Experimental 1.009~1.010[65,66,67] 170, 190, 192[68]
表2  Y2Ti2O7晶格常数和体模量
Method Lattice constant / nm B / GPa
a b c
PAW-PBE 1.045 0.372 1.135 149
Calculated[63] 1.046 0.373 1.137 128
Experimental[69] 1.035 0.370 1.125 -
表3  Y2TiO5晶格常数和体模量
图2  Y2Ti2O7中八面体和四面体间隙、Y2TiO5中多面体间隙位置A和B和通道间隙位置C
图3  H团簇在Y2TiO5和Y2Ti2O7的缺陷形成能
图4  Y2TiO5中H在间隙中的晶面电子定域函数图
图5  Y2Ti2O7中H在间隙中的晶面电子定域函数图
图6  计算中采用的界面匹配关系
图7  bcc-Fe(100)/Y2Ti2O7(100)界面配位方式以及体系总能随界面距离变化曲线
图8  计算中采用的界面模型和对应的Y/Ti-bridge界面结构
图9  富Y/Ti界面上各种H原子间隙占位和对应的界面俯视图
图10  单个H原子在Y2TiO5、Y2Ti2O7、bcc-Fe、bcc-Fe/Y2Ti2O7 界面中的H缺陷形成能
图11  含有H缺陷的代表性晶面的局域电荷密度等高线图和相应的三维电荷密度等值图(等值面值为0.6)
图12  富Y/Ti界面结构中不同位置H原子与其近邻原子态密度图
图13  富Y/Ti界面结构中H和He团簇的间隙占位
图14  单个He原子、H-He团簇、单个H原子在bcc-Fe/Y2Ti2O7 界面中的缺陷形成能
图15  Y2Ti2O7/bcc-Fe界面捕获H、He的机制图
[1] Odette G R, Alinger M J, Wirth B D.Recent developments in irradiation-resistant steels[J]. Ann. Rev. Mater. Res., 2008, 38: 471
[2] Grossbeck M L, Ehrlich K, Wassilew C.An assessment of tensile, irradiation creep, creep rupture, and fatigue behavior in austenitic stainless steels with emphasis on spectral effects[J]. J. Nucl. Mater., 1990, 174: 264
[3] Lee J S, Kimura A, Ukai S, et al.Effects of hydrogen on the mechanical properties of dispersion strengthenening steels[J]. J. Nucl. Mater., 2004, 329: 1122
[4] Beghini M, Benamati G, Bertiny L, et al. Effect of hydrogen on tensile properties of martenistic steels for fusion application [J]. J. Nucl. Mater., 1998, 258-263: 1295
[5] Kimura Y, Sakai Y, Hara T, et al.Hydrogen induced delayed fracture of ultrafine grained 0.6% O steel with dispersed oxide particles[J]. Scr. Mater., 2003, 49: 1111
[6] Yagodzinskyy Y, Malitckii E, Ganchenkova M, et al.Hydrogen effects on tensile properties of EUROFER 97 and ODS-EUROFER steels[J]. J. Nucl. Mater., 2014, 444: 435
[7] Sakasegawa H, Chaffron L, Legendre F, et al.Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy[J]. J. Nucl. Mater., 2009, 387: 115
[8] Sakasegawa H, Legendre F, Boulanger L, et al.Stability of non-stoichiometric clusters in the MA957 ODS ferritic alloy[J]. J. Nucl. Mater., 2011, 417: 229
[9] Miller M K, Kenik E A, Russell K F, et al.Atom probe tomography of nanoscale prticles in ODS ferritic alloys[J]. Mater. Sci. Eng., 2003, A353: 140
[10] Miller M K, Hoelzer D T, Kenik E A, et al.Stability of ferritic MA/ODS alloys at high temperatures[J]. Intermetallics, 2005, 13: 387
[11] Miller M K, Hoelzer D T, Kenik E A, et al. Nanometer scale precipitation in ferritic MA/ODS alloy MA957 [J]. J. Nucl. Mater., 2004, 329-333: 338
[12] Miller M K, Russell K F, Hoelzer D T.Characterization of precipitates in MA/ODS ferritic alloys[J]. J. Nucl. Mater., 2006, 351: 261
[13] Hirata A, Fujita T, Wen Y R, et al.Atomic structure of nanoclusters in oxide-dispersion-strengthened steels[J]. Nat. Mater., 2011, 10: 922
[14] Klimenkov M, Lindau R, M?slang A.New insights into the structure of ODS particles in the ODS-Eurofer alloy[J]. J. Nucl. Mater., 2009, 386: 553
[15] Ohtsuka S, Ukai S, Fujiwara M, et al. Improvement of 9Cr-ODS martensitic steel properties by controlling excess oxygen and titanium contents [J]. J. Nucl. Mater., 2004, 329-333: 372
[16] Chauhan A, Stra?berger L, Führer U, et al.Creep-fatigue interaction in a bimodal 12Cr-ODS steel[J]. Int. J. Fatigue, 2017, 102: 92
[17] Ukai S, Okuda T, Fujiwara M, et al.Characterization of high temperature creep properties in recrystallized 12Cr-ODS ferritic steel claddings[J]. J. Nucl. Sci. Technol., 2002, 39: 872
[18] Okuda T, Fujiwara M.Dispersion behavior of oxide particles in mechanically alloyed ODS steel[J]. J. Mater. Sci. Lett., 1995, 14: 1600
[19] Demkowicz M J, Bellon P, Wirth B D.Atomic-scale design of radiation-tolerant nanocomposites[J]. MRS Bull., 2010, 35: 992
[20] Larson D J, Maziasz P J, Kim I S, et al.Three-dimensional atom probe observation of nanoscale titanium-oxygen clustering in an oxide-dispersion-strengthened Fe-12Cr-3W-0.4Ti-Y2O3 ferritic alloy[J]. Scr. Mater., 2001, 44: 359
[21] Kim I S, Hunn J D, Larson D L, et al.Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe+ ion irradiation with simulataneous helium infection[J]. J. Nucl. Mater., 2000, 280: 264
[22] Klueh R L, Maziasz P J, Kim I S, et al. Tensile and creep properties of an oxide dispersion-strengthened ferritic steel [J]. J. Nucl. Mater., 2002, 307-311: 773
[23] Fu C L, Krcmar M, Painter G S, et al.Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe[J]. Phys. Rev. Lett., 2007, 99: 225502
[24] Miller M K, Fu C L, Krcmar M, et al.Vacancies as a constitutive element for the design of nanocluster-strengthened ferritic steels[J]. Front. Mater. Sci. China, 2009, 3: 9
[25] Xu J, Liu C T, Miller M K, et al.Nanocluter-associated vacancies in nanocluster-strengthened ferritic steel as seen via positron-lifetime spectroscopy[J]. Phys. Rev., 2009, 79B: 020204
[26] Miller M K, Parish C M.Role of alloying elements in nanostructured ferritic steels[J]. Mater. Sci. Technol., 2011, 27: 729
[27] Miller M K, Parish C M, Li Q.Advanced oxide dispersion strengthened and nanostructured ferritic alloys[J]. Mater. Sci. Technol., 2013, 29: 1174
[28] Brocq M, Radiguet B, Le Breton J M, et al. Nanoscale characterisation and clustering mechanism in an Fe-Y2O3 model ODS alloy processed by reactive ball milling and annealing[J]. Acta Mater., 2010, 58: 1806
[29] Hirata A, Fujita T, Liu C T, et al.Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM[J]. Acta Mater., 2012, 60: 5686
[30] Laurent-Brocq M, Legendre F, Mathon M H, et al.Influence of ball-milling and annealing conditions on nanocluster characteristics in oxide dispersion strengthened steels[J]. Acta Mater., 2012, 60: 7150
[31] Pasebani S, Charit I, Wu Y Q, et al.Mechanical alloying of lanthana-bering nanostructured ferritic steels[J]. Acta Mater., 2013, 61: 5605
[32] Kim J H, Park C H.Effect of milling temperature on nanoclusters and ultra fine grained microstructure of oxide dispersion strengthened steel[J]. J. Alloys. Compd., 2013, 585: 69
[33] Pressouyre G M, Dollet J, Vieillard-Baron B.Development of knowledge about the embrittlement of steels by hydrogen[J]. Mem. Etud. Sci. Rev. Met., 1982, 79: 161
[34] Maroef I, Olson D L, Eberhart M, et al.Hydrogen trapping in ferritic steel weld metal[J]. Int. Mater. Rev., 2002, 47: 191
[35] Oriani R A.Whitney award lecture-1987: Hydrogen-the versatile embrittler[J]. Corrosion, 1987, 43: 390
[36] Kuron D.Wasserstoff und Korrosion[M]. German: Verlag Irene Kuron, 2000: 63
[37] Xing W W, Chen X Q, Liu P T, et al.First principles studies of hydrogen behavior interacting with oxygen-enriched nanostructured particles in the ODS steels[J]. Int. J. Hydrogen Energ., 2014, 39: 18506
[38] Xing W W, Chen X Q, Qing X, et al.Unified mechanism for hydrogen trapping at metal vacancies[J]. Int. J. Hydrogen Energ., 2014, 39: 11321
[39] Ault J D, Welch A J E. The yttrium oxide-titanium system[J]. Acta Crystallogr., 1966, 20: 410
[40] Mumme W G, Wadsley A D.The structure of orthorhombic Y2TiO5, an example of mixed seven- and fivefold coordination[J]. Acta Crystallogr., 1968, 24B: 1327
[41] Kresse G, Hafner J.Ab initio molecular dynamics for liquid metals[J]. Phys. Rev., 1993, 47B: 558
[42] Kresse G, Hafner J.Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium[J]. Phys. Rev., 1994, 49B: 14251
[43] Kresse G, Furthmüeller J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set[J]. Comput. Mater. Sci., 1996, 6: 15
[44] Bl?hl P E.Projector augmented-wave method[J]. Phys. Rev., 1994, 50B: 17953
[45] Kresse G, Joubert D.From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev., 1999, 59B: 1758
[46] Perdew J P, Wang Y.Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev., 1992, 45B: 13244
[47] Perdew J P, Burke K, Ernzerhof M.Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865
[48] Moroni E G, Kresse G, Hafner J, et al.Ultrasoft pseudopotentials applied to magnetic Fe, Co, and Ni: From atoms to solids[J]. Phys. Rev., 1997, 56B: 15629
[49] ?ák M, ?ob M, Hafner J.First-principles study of magnetism at grain boundaries in iron and nickel[J]. Phys. Rev., 2008, 78B: 054418
[50] Jiang D E, Carter E A.Diffusion of interstitial hydrogen into and through bcc Fe from first principles[J]. Phys. Rev., 2004, 70B: 064102
[51] Tateyama Y, Ohno T.Stability and clusterization of hydrogen-vacancy complexes in α-Fe: An ab initio study[J]. Phys. Rev., 2003, 67B: 174105
[52] Ackland G J, Bacon D J, Calder A F, et al.Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential[J]. Philos. Mag., 1997, 75A: 713
[53] Mendelev M I, Han S, Srolovitz D J, et al.Development of new interatomic potentials appropriate for crystalline and liquid iron[J]. Philos. Mag., 2003, 83: 3977
[54] Simonelli G, Pasianot R, Savino E.Embedded-Atom-Method Interatomic Potentials for bcc-Iron. MRS Proceedings [M]. London: Cambridge Univ. Press, 1992: 567
[55] Dudarev S L, Derlet P M.A 'magnetic' interatomic potential for molecular dynamics simulations[J]. J. Phys. Condens. Matter, 2005, 17: 7097
[56] Müller M, Erhart P, Albe K.Analytic bond-order potential for bcc and fcc iron—Comparison with established embedded-atom method potentials[J]. J. Phys. Condens. Matter, 2007, 19: 326220
[57] Hung A, Yarovsky I, Muscat J, et al.First-principles study of metallic iron interfaces[J]. Surf. Sci., 2002, 501: 261
[58] Leung T C, Chan C T, Harmon B N.Ground-state properties of Fe, Co, Ni, and their monoxides: Results of the generalized gradient approximation[J]. Phys. Rev., 1991, 44B: 2923
[59] Singh D J, Pickett W E, Krakauer H.Gradient-corrected density functionals: Full-potential calculations for iron[J]. Phys. Rev., 1991, 43B: 11628
[60] Cho J H, Scheffler M.Ab initio pseudopotential study of Fe, Co, and Ni employing the spin-polarized LAPW approach[J]. Phys. Rev., 1996, 53B: 10685
[61] Wyckoff R W G, Wyckoff R W. Crystal Structures[M]. New York: Interscience, 1960: 141
[62] Kittel C.Introduction to Solid State[M]. 7th Ed., Hoboken: John Wiley & Sons, Inc., 1966: 97
[63] Jiang Y, Smith J R, Odette G.Formation of Y-Ti-O nanoclusters in nanostructured ferritic alloys: A first-principles study[J]. Phys. Rev., 2009, 79B: 064103
[64] Terki R, Bertrand G, Aourag H, et al.Ab initio calculations of structural and electronic properties of Y2Ti2O7 and Cd2Nb2O7[J]. Physica: Conden. Matter, 2007, 392B: 341
[65] Subramanian M A, Aravamudan G, Rao G V S. Oxide pyrochlores—A review[J]. Prog. Solid State Chem., 1983, 15: 55
[66] Glerup M, Nielsen O F, Poulsen F W.The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, AO2, studied by Raman spectroscopy and defect chemistry modeling[J]. J. Solid State Chem., 2001, 160: 25
[67] Haile S M, Wuensch B J, Prince E.Neutron Rietveld Analysis of Anion and Cation Disorder in the Fast-Ion Conducting Pyrochlore System Y2(ZrxTi1-x)2O7 [M]. Lodon: Cambridge Univ. Press, 1989: 81
[68] He L F, Shirahata J, Nakayama T, et al.Mechanical properties of Y2Ti2O7[J]. Scr. Mater., 2011, 64: 548
[69] Mumme W G, Wadsley A D.The structure of orthorhombic Y2TiO5, an example of mixed seven-and fivefold coordination[J]. Acta Crystall.,. 1968, 24B: 1327
[70] Liu Y L, Zhang Y L, Zhou H B, et al.Vacancy trapping mechanism for hydrogen formation in metal[J]. Phys. Rev., 2009, 79B: 172103
[71] Ribis J, De Carlan Y.Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials[J]. Acta Mater., 2012, 60: 238
[72] He J Q, Girard S N, Kanatzidis M G, et al.Microstructure-lattice thermal conductivity correlation in nanostructured PbTe0.7S0.3 thermoelectric materials[J]. Adv. Funct. Mater., 2012, 20: 764
[73] Smith J R, Jiang Y, Evans A G.Adhesion of the γ-Ni (Al)/α-Al2O3 interface: A first-principles assessment[J]. Int. J. Mater. Res., 2007, 98: 1214
[74] Jiang Y, Smith J R, Evans A G.First principles assessment of metal/oxide interface adhesion[J]. Appl. Phys. Lett., 2008, 92: 141918
[75] Yang L T, Jiang Y, Odette G R, et al.Nonstoichiometry and relative stabilities of Y2Ti2O7 polar surfaces: A density functional theory prediction[J]. Acta Mater., 2013, 61: 7260
[76] Yang L T, Jiang Y, Wu Y, et al.The ferrite/oxide interface and helium management in nano-structured ferritic alloys from the first principles[J]. Acta Mater., 2016, 103: 474
[77] Tanaka T, Oka K, Ohnuki S, et al. Synergistic effect of helium and hydrogen for defect evolution under multi-ion irradiation of Fe-Cr ferritic alloys [J]. J. Nucl. Mater., 2014, 329-333: 294
[78] Tang X Z, Guo Y F, Fan Y, et al.Interstitial emission at grain boundary in nanolayered alpha-Fe[J]. Acta Mater., 2016, 105: 147
[79] Bai X M, Uberuaga B P.The influence of grain boundaries on radiation-induced point defect production in materials: A review of atomistic studies[J]. JOM, 2013, 65: 360
[80] Bai X M, Voter A F, Hoagland R G, et al.Efficient annealing of radiation damage near grain boundaries via interstitial emission[J]. Science, 2010, 327: 1631
[81] Ackland G.Controlling radiation damage[J]. Science, 2010, 327: 1587
[1] 曹铁山, 赵津艺, 程从前, 孟宪明, 赵杰. 冷变形和固溶温度对HR3C钢中σ相析出行为的影响[J]. 金属学报, 2020, 56(5): 673-682.
[2] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[3] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[4] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[5] 马荣耀,王长罡,穆鑫,魏欣,赵林,董俊华,柯伟. 静水压力对超纯Fe腐蚀行为的影响[J]. 金属学报, 2019, 55(7): 859-874.
[6] 王常帅,郭莉莉,唐丽英,周荣灿,郭建亭,周兰章. GH984G合金在700 ℃水蒸气中的氧化行为[J]. 金属学报, 2019, 55(7): 893-901.
[7] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[8] 王资兴,黄烁,张北江,王磊,赵光普. 高合金化GH4065镍基变形高温合金点状偏析研究[J]. 金属学报, 2019, 55(3): 417-426.
[9] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[10] 王瑾, 余黎明, 李冲, 黄远, 李会军, 刘永长. 不同温度对含与不含位错α-Fe中He原子行为的影响[J]. 金属学报, 2019, 55(2): 274-280.
[11] 马荣耀, 穆鑫, 刘博, 王长罡, 魏欣, 赵林, 董俊华, 柯伟. 静水压力对超纯Al/超纯Fe电偶中超纯Al腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1593-1605.
[12] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[13] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.
[14] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
[15] 鲍思前, 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊. Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征[J]. 金属学报, 2018, 54(6): 877-885.