Please wait a minute...
金属学报  2020, Vol. 56 Issue (1): 53-65    DOI: 10.11900/0412.1961.2019.00146
  综述 本期目录 | 过刊浏览 |
1. 中国科学院金属研究所  沈阳 110016
2. 中国科学技术大学材料科学与工程学院  沈阳 110016
3. 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室  沈阳 110016
Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels
YANG Ke1,LIANG Ye1,2,YAN Wei1,3(),SHAN Yiyin1,3
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(4425 KB)   HTML


关键词 马氏体耐热钢B偏聚M23C6碳化物Ostwald熟化    

Addition of small amount of boron (B) in the (9~12)%Cr martensitic heat resistant steels can obviously prohibit the Ostwald ripening of M23C6 carbides so as to improve creep strength as well as creep rupture life. With the purpose of taking full advantages of B element, it is critical to make B preferentially distribute in (9~12)%Cr martensitic heat resistant steels. The mechanism of B preventing M23C6 carbides from ripening is also on the premise of clearly identifying the preferential distribution of B in the steels. Much concern has been growing over the preferential distribution of B in the research of (9~12)%Cr martensitic heat resistant steels. Therefore, this article gives a review on this aspect. Following a summary of the effect of B on mechanical properties, several commonly used characterizing methods for B segregation in the steels are introduced. Based on the physical metallurgy and the solution, diffusion mechanisms of B element, discussions on the preferential distribution of B element at prior austenite grain boundaries and in the M23C6 carbides as well as the related factors are emphasized. At last, two prevalent mechanisms of B restraining the coarsening of M23C6 carbides in (9~12)%Cr martensitic heat resistant steels are given by an intensive explanation so that the relationship between the preferential distribution of B and its advantage of increasing creep performance by suppressing the ripening M23C6 carbides are systematically elaborated, which gives a deep understanding of the role of B element in (9~12)%Cr martensitic heat resistant steels.

Key wordsmartensitic heat resistant steel    B    segregation    M23C6 carbide    Ostwald ripening
收稿日期: 2019-05-06     
ZTFLH:  TG142.1  
通讯作者: 严伟     E-mail:
Corresponding author: Wei YAN     E-mail:
作者简介: 杨 柯,男,1961年生,研究员


杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
Ke YANG, Ye LIANG, Wei YAN, Yiyin SHAN. Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels. Acta Metall Sin, 2020, 56(1): 53-65.

链接本文:      或

图1  热处理态G115钢中的硼化物
图2  不同温度时效1000 h后G115钢中B元素的分布
图3  700 ℃时效1000 h后G115钢中发生熟化的M23C6碳化物
图4  利用原子探针层析术(APT)获得的原奥氏体晶界处M23C6碳化物的原子三维重构图[8]
图5  热处理过程中M23(CB)6的形成过程示意图[10]
图6  B抑制M23C6碳化物熟化机理图[9]
[1] Liu Z D, Cheng S C, Bao H S, et al. Localization of boiler steel technology in China used for ultra super critical power plants [J]. Iron Steel, 2009, 44(6): 1
[1] (刘正东, 程世长, 包汉生等. 超超临界火电机组用锅炉钢技术国产化问题 [J]. 钢铁, 2009, 44(6): 1)
[2] Li W W. Research on the mechanism design and evaluation method of power coal supply chain's coordination under uncertainty conditions [D]. Harbin: Harbin Institute of Technology, 2016
[2] (李巍巍. 不确定条件下电煤供应链协调的机制设计及评价方法研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016)
[3] Shu G G, Liu J N, Shi C Z, et al. Microstructure, Mechanical Properties and Engineering Application of T/P91 Heat Resistant Steel for Supercritical Power Plants [M]. Xi'an: Shanxi Science and Technology Press, 2006: 9
[3] (束国刚, 刘江南, 石崇哲等. 超临界锅炉用T/P91钢的组织性能与工程应用 [M]. 西安: 陕西科学技术出版社, 2006: 9)
[4] Msuyama F. History of power plants and progress in heat resistant steels [J]. ISIJ Int., 2001, 41: 612
[5] Maruyama K, Sawada K, Koike J I. Strengthening mechanisms of creep resistant tempered martensitic steel [J]. ISIJ Int., 2001, 41: 641
[6] Abe F. Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 ℃ and above [J]. Engineering, 2015, 1: 211
[7] Yan P, Liu Z D, Bao H S, et al. Effect of normalizing temperature on the strength of 9Cr-3W-3Co martensitic heat resistant steel [J]. Mater. Sci. Eng., 2014, A597: 148
[8] Liu F, Fors D H R, Golpayegani A, et al. Effect of boron on carbide coarsening at 873 K (600 ℃) in 9 to 12 pct chromium steels [J]. Metall. Mater. Trans., 2012, 43A: 4053
[9] Abe F. Behavior of boron in 9Cr heat resistant steel during heat treatment and creep deformation [J]. Key Eng. Mater., 2007, 345-346: 569
[10] Abe F. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants [J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
[11] Abe F. Effect of boron on microstructure and creep strength of advanced ferritic power plant steels [J]. Procedia Eng., 2011, 10: 94
[12] Titova T I, Shulgan N A, Malykhina I Y. Effect of boron microalloying on the structure and hardenability of building steel [J]. Met. Sci. Heat Treat., 2007, 49: 39
[13] Grange R A, Garvey T M. Factors affecting the hardenability of boron-treated steels [J]. Trans. Am. Soc. Met., 1946, 37: 136
[14] Maitrepierre P, Thivellier D, Tricot R. Influence of boron on the decomposition of austenite in low carbon alloyed steels [J]. Metall. Mater. Trans., 1975, 6A: 287
[15] Hwang B, Suh D W, Kim S J. Austenitizing temperature and hardenability of low-carbon boron steels [J]. Scr. Mater., 2011, 64: 1118
[16] Karlsson L, Nordén H, Odelius H. Non-equilibrium grain boundary segregation of boron in austenitic stainless steel—I. Large scale segregation behaviour [J]. Acta Metall., 1988, 36: 1
[17] Asahi H. Effects of Mo addition and austenitizing temperature on hardenability of low alloy B-added steels [J]. ISIJ Int., 2002, 42: 1150
[18] Li X L. The segregations of boron and niobium at grain boundaries in microalloyed steel and high-purity nickel [D]. Beijing: University of Science and Technology Beijing, 2017
[18] (李向龙. 硼、铌元素在微合金钢与高纯镍中的晶界偏聚行为 [D]. 北京: 北京科技大学, 2017)
[19] Kapadia B M. Effect of boron additions on the toughness of heat-treated low-alloy steels [J]. J. Heat Treat., 1987, 5: 41
[20] Ghali S N, El-Faramawy H S, Eissa M M. Influence of boron additions on mechanical properties of carbon steel [J]. J. Miner. Mater. Charact. Eng., 2012, 11: 995
[21] Yan P, Liu Z D, Bao H S, et al. Effect of microstructural evolution on high-temperature strength of 9Cr-3W-3Co martensitic heat resistant steel under different aging conditions [J]. Mater. Sci. Eng., 2013, A588: 22
[22] Shirzadi A, Jackson S. Structural Alloys for Power Plants [M]. Cambridge: Woodhead Publishing, 2014: 250
[23] Golpayegani A, Liu F, Svensson H, et al. Microstructure of a creep-resistant 10 pct chromium steel containing 250 ppm boron [J]. Metall. Mater. Trans., 2011, 42A: 940
[24] H?ttestrand M, Andrén H O. Boron distribution in 9-12% chromium steels [J]. Mater. Sci. Eng., 1999, A270: 33
[25] Mayr P, Martín F M, Albu M, et al. Correlation of creep strength and microstructural evolution of a boron alloyed 9Cr3W3CoVNb steel in as-received and welded condition [J]. Mater. High Temp., 2010, 27: 67
[26] Horiuchi T, Igarashi M, Abe F. Improved utilization of added B in 9Cr heat-resistant steels containing W [J]. ISIJ Int., 2002, 42(Suppl.1) S67
[27] Mayr P, Holzer I, Mendez-Martin F, et al. Experience with 9Cr3W3CoVNbBN base material and crosswelds at 650 ℃ for implementation in USC power plants [A]. 3rd Symposium on Heat Resistant Steels and Alloys for High Efficiency USC Power Plants [C]. Tsukuba, Japan: National Institute for Materials Science, 2009: 1
[28] Albu M, Mayr P, Martín F M, et al. The influence of boron on the microstructure of a 9 wt% Cr ferritic steel [J]. Mater. High Temp., 2011, 28: 120
[29] Lejcek P. Grain Boundary Segregation in Metals [M]. Berlin: Springer-Verlag Berlin and Heidelberg, 2010: 27
[30] Shigesato G, Fujishiro T, Hara T. Grain boundary segregation behavior of boron in low-alloy steel [J]. Metall. Mater. Trans., 2014, 45A: 1876
[31] He X L, Chu Y Y, Zhang X L, et al. The distribution of boron in steel [J]. Acta Metall. Sin., 1979, 13: 235
[31] (贺信莱, 诸幼义, 张秀林等. 硼在钢中的分布 [J]. 金属学报, 1979, 13: 235)
[32] Jahazi M, Jonas J J. The non-equilibrium segregation of boron on original and moving austenite grain boundaries [J]. Mater. Sci. Eng., 2002, A335: 49
[33] Li W Q, Sun J Y, Xu H X, et al. Application of fission track etching method for study carburized boron steels [J]. Iron Steel, 1992, 27(6): 42
[33] (李文卿, 孙继跃, 许洪新等. 显微径迹照相技术在渗碳硼钢研究中的应用 [J]. 钢铁, 1992, 27(6): 42)
[34] Yin H T, Wang J. SIMS analysis technology and the applied research [J]. Chin. J. Spectrosc. Lab., 2008, 25: 180
[34] (尹会听, 王 洁. 二次离子质谱分析技术及应用研究 [J]. 光谱实验室, 2008, 25: 180)
[35] Li Y J, Ponge D, Choi P, et al. Atomic scale investigation of non-equilibrium segregation of boron in a quenched Mo-free martensitic steel [J]. Ultramicroscopy, 2015, 159: 240
[36] Yong Q L. Secondary Phases in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 167
[36] (雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 167)
[37] Li P S, Xiao L J, Xie Z. Thermodynamic analysis of AlN and BN competitive precipitation in low carbon steel [J]. J. Iron Steel Res., 2009, 21(5): 16
[37] (李培松, 肖丽俊, 谢 植. 低碳钢中AlN和BN竞相析出热力学分析 [J]. 钢铁研究学报, 2009, 21(5): 16)
[38] Klimenkov M, Materna-Morris E, M?slang A. Boron effect on the microstructure of 9%Cr ferritic-martensitic steels [J]. J. Nucl. Mater., 2015, 462: 280
[39] Busby P E, Wells C. Diffusion of boron in alpha iron [J]. JOM, 1954, 6(9): 972
[40] Wang W D, Zhang S H, He X L. Diffusion of boron in alloys [J]. Acta Metall. Mater., 1995, 43: 1693
[41] Hayashi Y, Sugeno T. Nature of boron in α-iron [J]. Acta Metall., 1970, 18: 693
[42] Fors D H R, Wahnstr?m G. Nature of boron solution and diffusion in α-iron [J]. Phys. Rev., 2008, 77B: 132102
[43] Bialon A F, Hammerschmidt T, Drautz R. Ab initio study of boron in α-iron: Migration barriers and interaction with point defects [J]. Phys. Rev., 2013, 87B: 104109
[44] McLellan R B, Ko C. The diffusion of boron in f.c.c. iron [J]. J. Phys. Chem. Solids, 1993, 54: 465
[45] Busby P E, Warga M E, Wells C. Diffusion and solubility of boron in iron and steel [J]. JOM, 1953, 5(11): 1463
[46] Zhang X, Li X L, Wu P, et al. First principles calculation of boron diffusion in fcc-Fe [J]. Curr. Appl. Phys., 2018, 18: 1108
[47] Takahashi J, Ishikawa K, Kawakami K, et al. Atomic-scale study on segregation behavior at austenite grain boundaries in boron- and molybdenum-added steels [J]. Acta Mater., 2017, 133: 41
[48] Hondros E D, Seah M R, Hofmann S, et al. Physical Metallurgy [M]. 4th Ed., Amsterdam: North-Holland, 1996: 1201
[49] Williams T M, Stoneham A M, Harries D R. The segregation of boron to grain boundaries in solution-treated Type 316 austenitic stainless steel [J]. Met. Sci., 1976, 10: 14
[50] Xu T D, Cheng B Y. Kinetics of non-equilibrium grain-boundary segregation [J]. Prog. Mater. Sci., 2004, 49: 109
[51] Li Y J, Ponge D, Choi P, et al. Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography [J]. Scr. Mater., 2015, 96: 13
[52] Mun D J, Shin E J, Cho K C, et al. Cooling rate dependence of boron distribution in low carbon steel [J]. Metall. Mater. Trans., 2012, 43A: 1639
[53] Miyamoto G, Goto A, Takayama N, et al. Three-dimensional atom probe analysis of boron segregation at austenite grain boundary in a low carbon steel—Effects of boundary misorientation and quenching temperature [J]. Scr. Mater., 2018, 154: 168
[54] Zhu H Y, Sun J, Wang W, et al. Experimental investigation on segregation and remelting behaviors of boron-containing steel with low carbon [J]. Results Phys., 2019, 12: 67
[55] Chu Y Y, He X L, Tang L, et al. Two kinds of boron segregation at austenite grain boundaries [J]. Acta Metall. Sin., 1987, 23: 169
[55] (褚幼义, 贺信莱, 唐 立等. 硼在奥氏体晶界的两类偏聚 [J]. 金属学报, 1987, 23: 169)
[56] Aust K T, Hanneman R E, Niessen P, et al. Solute induced hardening near grain boundaries in zone refined metals [J]. Acta Metall., 1968, 16: 291
[57] Zhang S H, He X L, Chu Y Y, et al. Behaviour of boron segregation to grain boundaries in bcc Fe-3%Si alloy [J]. Acta Metall. Sin., 1993, 29(6): 1
[57] (章三红, 贺信莱, 褚幼义等. 硼在体心立方Fe-3%Si合金中的晶界偏聚行为 [J]. 金属学报, 1993, 29(6): 1)
[58] Brailsford A D, Bullough R. The rate theory of swelling due to void growth in irradiated metals [J]. J. Nucl. Mater., 1972, 44: 121
[59] Simpson C J, Aust K T, Winegard W C. The formation of Pb2Au precipitates at high velocity grain boundaries after quenching [J]. Metall. Mater. Trans., 1970, 1B: 1482
[60] Watanabe S, Ohtani H, Kunitake T. The Influence of hot rolling and heat treatments on the distribution of boron in steel [J]. Trans. Iron Steel Ins. Jpn., 1983, 23: 31
[61] Gay A S, Fraczkiewicz A, Biscondi M. Mechanisms of the intergranular segregation of boron in (B2) FeAl alloys [J]. Mater. Sci. Forum, 1999, 294-296: 453
[62] Xu T D. Non-equilibrium grain-boundary segregation kinetics [J]. J. Mater. Sci., 1987, 22: 337
[63] Wang H, Yan W, van Zwaag S, et al. On the 650 ℃ thermostability of 9-12Cr heat resistant steels containing different precipitates [J]. Acta Mater., 2017, 134: 143
[64] Hald J. Microstructure and long-term creep properties of 9-12% Cr steels [J]. Int J. Pressure Vessels Piping, 2008, 85: 30
[65] Umantsev A, Olson G B. Ostwald ripening in multicomponent alloys [J]. Scr. Metall. Mater., 1993, 29: 1135
[66] Abe F. Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels [J]. Mater. Sci. Eng., 2004, A387-389: 565
[67] Takahashi N, Fujita T, Yamada T. Effect of boron on long period creep rupture strength of 12%Cr heat resisting steel [J]. Tetsu Hagané, 1975, 61: 2263
[67] (高橋 紀雄, 藤田 利夫, 山田 武海. 12%Cr耐熱鋼の長時間クリープ破断強度におよぼすBの影響 [J]. 鉄と鋼, 1975, 61: 2263)
[68] H?ttestrand M, Schwind M, Andrén H O. Microanalysis of two creep resistant 9-12% chromium steels [J]. Mater. Sci. Eng., 1998, A250: 27
[69] Lundin L, F?llman S, Andrén H O. Microstructure and mechanical properties of a 10% chromium steel with improved creep resistance at 600 ℃ [J]. Mater. Sci. Technol., 1997, 13: 233
[1] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[2] 吴翔,左秀荣,赵威威,王中洋. NM500耐磨钢拉伸过程中TiN的破碎机制[J]. 金属学报, 2020, 56(2): 129-136.
[3] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
[4] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[5] 李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.
[6] 马荣耀,王长罡,穆鑫,魏欣,赵林,董俊华,柯伟. 静水压力对超纯Fe腐蚀行为的影响[J]. 金属学报, 2019, 55(7): 859-874.
[7] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[8] 周丽,张鹏飞,王全兆,肖伯律,马宗义,于涛. B4C/6061Al复合材料热压缩断裂行为的多尺度研究[J]. 金属学报, 2019, 55(7): 911-918.
[9] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[10] 陈斌,何杰,孙小钧,赵九洲,江鸿翔,张丽丽,郝红日. Fe-Cu-Pb合金液-液相分离及废旧电路板混合金属分级分离与回收[J]. 金属学报, 2019, 55(6): 751-761.
[11] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[12] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[13] 林晓冬,彭群家,韩恩厚,柯伟. 退火对热老化308L不锈钢焊材显微结构的影响[J]. 金属学报, 2019, 55(5): 555-565.
[14] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
[15] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.