Please wait a minute...
金属学报  2017, Vol. 53 Issue (9): 1038-1046    DOI: 10.11900/0412.1961.2017.00035
  本期目录 | 过刊浏览 |
累积叠轧TC4钛合金的组织演化与力学性能
刘国怀(), 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋
东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
Microstructural Evolution and Mechanical Properties of TC4 Titanium Alloy During Acculative Roll Bonding Process
Guohuai LIU(), Tianrui LI, Mang XU, Tianliang FU, Yong LI, Zhaodong WANG, Guodong WANG
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
全文: PDF(10362 KB)   HTML
  
摘要: 

采用累积叠轧技术制备具有超细晶组织的TC4钛合金,考察了叠轧工艺对界面结合和微观组织的影响规律以及该过程中α ?β两相钛合金的变形机制,分析了叠轧工艺对TC4合金力学性能的影响。结果表明,TC4合金累积叠轧过程中需要足够的加热温度(近于720 ℃)、防氧化处理以及多层数大下压量的轧制工艺,才能获得良好的界面结合,但是界面处存在O含量较高的硬化层。随着叠轧温度和叠轧层数的增加,TC4板材的结合界面逐渐消失并具有较高的结合强度。累积叠轧过程是协同变形和剪切变形综合作用的结果,即变形初期晶界β相由长条状转变为短片状且晶界发生滑移,而在变形程度较高时组织中有大量的剪切带,此过程存在大量局部变形以适应大塑性变形过程。变形组织中存在局部等轴组织(约300 nm)和拉长的变形结构(约400 nm),其中等轴组织是由于变形温度、局部剪切变形和局部过热作用而发生再结晶形成的。叠轧板材在厚度方向存在组织性能不均匀现象,在结合界面处硬度较高,随着叠轧层数的增加硬度逐渐趋于一致。同时随着叠轧层数的增加,TC4合金的抗拉强度逐渐增加,在叠轧16层后抗拉强度达到1325 MPa,塑性降低为5.4%。在叠轧层数较少时,断裂过程表现为韧性断裂,随着叠轧层数的增加,断口形貌逐渐转变为韧窝断口和准解理断口的综合形貌。

关键词 TC4钛合金累积叠轧界面结合微观组织力学性能    
Abstract

TC4 titanium alloy is highly promising for aerospace and medical implant applications due to its low density, high strength, corrosion resistance and biocompatibility, and the ultra-fine grains of TC4 alloy by accumulative roll bonding (ARB) can efficiently improve the low temperature super-plasticity and biocompatibility for its widespread applications. However, the ARB process for TC4 alloy has been limited due to the high deformation resistance and low anti-oxidant ability. In this work, ARB was conducted for the ultra-fine grains of TC4 titanium alloy, and the effects of ARB temperatures and layer numbers on the bonding interface and microstructure were investigated as well as the deformation mechanism of the mixed α /β phase structure, and the influences of ARB processing on the mechanical properties were studied. The good interface bonding could be fabricated by the proper ARB temperature (near 720 ℃), the anti-oxidation treatment and the multilayer with the high deformation, which always takes on the hardened interface with the high oxidation contents, and the interface bonding strength increases with the increase of the ARB layers and temperature through the process of the diffusion and the necking fracture. The deformation process is composed by the cooperation deformation of α /β structure and the shear deformation during ARB processed TC4 alloy, during which the β phase at the grain boundary changes from the long strips to the short bands to deform with hcp α phase, while the shear bands with severe local-deformation is used to adapt the severe plastic deformation. The deformed microstructure is composed of the equiaxed structure (about 300 nm spacing) and the elongated deformation structure (about 400 nm spacing), in which the equiaxed structure comes from the function of the deformation temperature, local shear deformation and the local overheat. Additionally, the inhomogeneous microstructure and properties along the thickness direction can be observed, and the high hardness can be obtained at the bonding interface, which gradually distributes homogeneous with the increase of ARB layers. The strength of ARB processed TC4 sheets increases with the increase of ARB layers, which can get to 1325 MPa after 16 ARB layers, and simultaneously the plasticity decreases to 5.4%. The ductile fracture can be observed with the low ARB layers, while the mixed structure of the quasi-cleavage and ductile fracture is obtained with the increase of ARB layers.

Key wordsTC4 titanium alloy    ARB process    interface bonding    microstructure    mechanical property
收稿日期: 2017-02-13     
ZTFLH:  TG331  
基金资助:国家重点研发计划项目Nos.2016YFB0301201和2016YFB0300603,国家自然科学基金项目No.51504060及辽宁省科技项目博士启动基金项目No.201501150
作者简介:

作者简介 刘国怀,男,蒙古族,1985年生,博士

引用本文:

刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.
Guohuai LIU, Tianrui LI, Mang XU, Tianliang FU, Yong LI, Zhaodong WANG, Guodong WANG. Microstructural Evolution and Mechanical Properties of TC4 Titanium Alloy During Acculative Roll Bonding Process. Acta Metall Sin, 2017, 53(9): 1038-1046.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00035      或      https://www.ams.org.cn/CN/Y2017/V53/I9/1038

图1  TC4合金累积叠轧(ARB)过程中结合界面形态随叠轧温度的变化
图2  TC4合金叠轧过程中结合界面的形态及成分分布
图3  TC4合金ARB过程中叠轧界面形态随叠轧层数的变化
图4  TC4合金在ARB过程中界面特征尺寸随叠轧温度和叠轧层数的变化曲线
图5  TC4合金初始组织及ARB过程中不同叠轧层数时的微观组织形貌
图6  累积叠轧TC4合金微观组织以及晶粒协同变形的TEM像
图7  经ARB处理的TC4合金厚度方向上的硬度变化曲线
图8  累积叠轧TC4合金抗拉强度和延伸率随叠轧层数的变化规律
图9  累积叠轧TC4合金拉伸试样断口形貌
[1] Azushima A, Kopp R, Korhonen A, et al.Severe plastic deformation (SPD) processes for metal[J]. CIRP Ann. Manuf. Techn., 2008, 57: 716
[2] Wang M, Yang Y Q, Luo X.Research status in preparation and properties of ultra-fine grained Ti alloys[J]. Mater. Rev., 2013, 27(7): 94(王苗, 杨延清, 罗贤. 超细晶钛合金的制备及性能研究现状[J]. 材料导报, 2013, 27(7): 94)
[3] Valiev R Z, Estrin Y, Horita Z, et al.Producing bulk ultrafine-grained materials by severe plastic deformation[J]. JOM, 2006, 58: 33
[4] Tsuji N, Saito Y, Lee S H, et al.ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials[J]. Adv. Eng. Mater., 2003, 5: 338
[5] Karimi M, Toroghinejad M R.An alternative method for manufacturing high-strength CP Ti-SiC composites by accumulative roll bonding process[J]. Mater. Des., 2014, 59: 494
[6] Gashti S O, Fattah-Alhosseini A, Mazaheri Y, et al.Effects of grain size and dislocation density on strain hardening behavior of ultrafine grained AA 1050 processed by accumulative roll bonding[J]. J. Alloys Compd., 2016, 658: 854
[7] Duan J D, Quadir M Z, Xu W, et al.Texture balancing in a fcc/bcc multilayered composite produced by accumulative roll bonding[J]. Acta Mater., 2017, 123: 11
[8] Mishin O V, Zhang Y B, Godfrey A.The influence of multiscale he-terogeneity on recrystallization in nickel processed by accumulative roll bonding[J]. J. Mater. Sci., 2017, 52: 2730
[9] Saito Y, Utsunomiya H, Tsuji N, et al.Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process[J]. Acta Mater., 1999, 47: 579
[10] Xing Z P, Kang S B, Kim H W.Softening behavior of 8011 alloy produced by accumulative roll bonding process[J]. Scr. Mater., 2001, 45: 597
[11] Sergueeva A V, Stolyarov V V, Valiev R Z, et al.Advanced mechanical properties of pure titanium with ultrafine grained structure[J]. Scr. Mater., 2001, 45: 747
[12] Ghafari-Gousheh S, Nedjad S H, Khalil-Allafi J.Tensile properties and interfacial bonding of multi-layered, high-purity titanium strips fabricated by ARB process[J]. J. Mech. Behav. Biomed., 2015, 51: 147
[13] Matsumoto H, Yoshida K, Lee S H, et al.Ti-6Al-4V alloy with an ultrafine-grained microstructure exhibiting low-temperature-high-strain-rate superplasticity[J]. Mater. Lett., 2013, 98: 209
[14] Leyens C, Peters M, translated by Chen Z H. Titanium and Titanium Alloys [M]. Beijing: Chemical Industry Press, 2005: 22(Leyens C, Peters M著, 陈振华译. 钛与钛合金 [M]. 北京: 化学工业出版社, 2005: 22)
[15] Seagle S R, Yu K O, Giangiordano S.Considerations in processing titanium[J]. Mater. Sci. Eng., 1999, A263: 237
[16] Song H W, Zhang S H, Cheng M, et al.Flow softening mechansim of a Ti alloy with lamellar structure during subtransus deformation[J]. Acta Metall. Sin., 2011, 47: 462(宋鸿武, 张士宏, 程明等. 钛合金片层组织两相区变形时的流动软化机理分析[J]. 金属学报, 2011, 47: 462)
[17] Milner J L, Bunget C, Abu-Farha F, et al.Modeling tensile strength of materials processed by accumulative roll bonding[J]. J. Manuf. Process., 2013, 15: 219
[18] Zherebtsov S V, Salishchev G A, Galeyev R M, et al.Production of submicrocrystalline structure in large-scale Ti-6Al-4V billet by warm severe deformation processing[J]. Scr. Mater., 2004, 51: 1147
[19] Pachla W, Kilczyk M, Przybysz S, et al.Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2[J]. J. Mater. Process. Technol., 2015, 221: 255
[20] Terada D, Inoue S, Tsuji N.Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process[J]. J. Mater. Sci., 2007, 42: 1673
[21] Milner J L, Abu-Farha F, Bunget C, et al.Grain refinement and mechanical properties of CP-Ti processed by warm accumulative roll bonding[J]. Mater. Sci. Eng., 2013, A561: 109
[22] Saito Y, Tsuji N, Utsunomiya H, et al.Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process[J]. Scr. Mater., 1998, 39: 1221
[23] Saito Y, Utsunomiya H, Tsuji N, et al.Novel ultra-high straining process for bulk materials——Development of the accumulative roll-bonding (ARB) process[J]. Acta Mater., 1999, 47: 579
[24] Huang X, Tsuji N, Hansen N, et al.Microstructural evolution during accumulative roll-bonding of commercial purity aluminum[J]. Mater. Sci. Eng., 2003, A340: 265
[25] Terada D, Inoue M, Kitahara H, et al.Change in mechanical properties and microstructure of ARB processed Ti during annealing[J]. Mater. Trans., 2008, 49: 41
[26] Wu H J, Rong Y, Li X D, et al.Rolling process of wide titanium sheet ply[J]. Chin. J. Nonferrous Met., 2010, 20: 807(吴慧娟, 容耀, 李向东等. 宽幅纯钛薄板的叠轧工艺[J]. 中国有色金属学报, 2010, 20: 807)
[27] Xing C.Processing and properties of ultrafine grained titanium prepared by accumulative roll bonding [D]. Harbin: Harbin Engineering University, 2014(邢超. 超细晶纯钛累积叠轧制备工艺与性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2014)
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[4] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[5] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[6] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[7] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[8] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[9] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[10] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[11] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[12] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[13] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[14] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[15] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.