Please wait a minute...
金属学报  2017, Vol. 53 Issue (4): 415-422    DOI: 10.11900/0412.1961.2016.00424
  本期目录 | 过刊浏览 |
中国科学院金属研究所 沈阳 110016
Microstructure and Mechanical Properties of TC16 Titanium Alloy by Room Temperature Roller Die Drawing
Zhiqiang ZHANG,Limin DONG(),Shaoxuan GUAN,Rui YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(5376 KB)   HTML

利用XRD、SEM和TEM等手段分析了TC16钛合金辊模拉丝变形过程中的相组成和显微组织的变化情况,并对不同应变的辊模拉丝变形丝材进行了室温拉伸性能与显微硬度测试。结果表明,在辊模拉丝变形过程中,TC16钛合金丝材主要由α相和β相组成,部分β相发生应力诱发α''马氏体相变;随着辊模拉丝真应变的增加,TC16钛合金丝材的显微组织明显细化,当真应变达到2.14时,横截面和纵截面中的α相和β相纤维状组织厚度均约为0.3 μm,两相衍射斑点已经近似环状,表明两相显微组织也明显细化;随着辊模拉丝真应变的增加,TC16钛合金丝材的抗拉强度和显微硬度大幅提高,当真应变达到2.14时,TC16钛合金丝材的显微硬度由初始的266 HV提高到365 HV。

关键词 TC16钛合金辊模拉丝显微组织力学性能晶粒细化    

Grain refinement is a challenging topic to improve mechanical properties of metallic materials, especially for titanium alloys which show great potential in aerospace and medical implants areas due to the low density and good corrosion resistance. However, severe plastic deformation (SPD) technologies which have been commonly used in laboratory in smaller scale are difficult to be realized in industrial. Considerable researches are therefore paying attention to the development of new technologies for improvement of grain refinement at relatively lower strains. In this work, the dual phase TC16 titanium alloy showing excellent room temperature ductility was investigated with emphasis on the feasibility of producing ultrafine grains by roller die drawing at room temperature. The techniques of XRD, SEM, TEM, Vickers hardness test and tensile test were employed to analyze the phase constitutes, microstructure evolutions and preliminary mechanical properties of the alloy deformed at different conditions. Results reveal that TC16 titanium alloy mainly consists of α and β phases after roller die drawing at room temperature, and a small quantity of stress-induced α" martensite can be additionally identified inside β grains. The grain sizes of α phase and β phase decrease with strain increasing, which result to enhanced tensile strength and Vickers hardness. Indeed, the fibrous morphology of both α phase and β phase with 0.3 μm in thickness and a high value of 365 HV in Vickers hardness were revealed at the applied true strain of 2.14. Ultra-fine grains evidenced by a near-ring SAED spots were therefore achieved in the present case.

Key wordsTC16 titanium alloy    roller die drawing    microstructure    mechanical property    grain refinement
收稿日期: 2016-09-21     


张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
Zhiqiang ZHANG, Limin DONG, Shaoxuan GUAN, Rui YANG. Microstructure and Mechanical Properties of TC16 Titanium Alloy by Room Temperature Roller Die Drawing. Acta Metall Sin, 2017, 53(4): 415-422.

链接本文:      或

图1  不同真应变的TC16钛合金丝材纵截面的XRD谱
图2  真应变为1.05的TC16钛合金丝材纵截面55°~58°衍射峰的XRD谱分峰结果
图3  不同真应变的TC16钛合金丝材横截面和纵截面显微组织的SEM像
图4  不同真应变的TC16钛合金丝材横截面上α相尺寸和纵截面上α相长宽比的变化
图5  真应变2.14的TC16钛合金丝材横截面和纵截面的TEM像和选区电子衍射图
图6  真应变对TC16钛合金丝材室温拉伸性能的影响
图7  不同真应变的TC16钛合金丝材纵截面显微硬度
[1] Terada D, Inoue S, Tsuji N.Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process[J]. J. Mater. Sci., 2007, 42: 1673
[2] Gunderov D V, Polyakov A V, Semenova I P, et al.Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing[J]. Mater. Sci. Eng., 2013, A562: 128
[3] Mishnaevsky L Jr, Levashov E, Valiev R Z, et al.Nanostructured titanium-based materials for medical implants: Modeling and development[J]. Mater. Sci. Eng., 2014, R81: 1
[4] Sabirov I, Perez-Prado M T, Molina-Aldareguia J M, et al. Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route[J]. Scr. Mater., 2011, 64: 69
[5] Stolyarov V V, Zhu Y T, Lowe T C, et al.A two step SPD processing of ultrafine-grained titanium[J]. Nanostruct. Mater., 1999, 11: 947
[6] Li Z M, Fu L M, Fu B, et al.Effects of annealing on microstructure and mechanical properties of nano-grained titanium produced by combination of asymmetric and symmetric rolling[J]. Mater. Sci. Eng., 2012, A558: 309
[7] Yapici G G, Karaman I, Luo Z P.Mechanical twinning and texture evolution in severely deformed Ti-6Al-4V at high temperature[J]. Acta Mater., 2006, 54: 3755
[8] Saitova L R, H?ppel H W, G?ken M, et al.Fatigue behavior of ultrafine-grained Ti-6Al-4V ‘ELI’ alloy for medical applications[J]. Mater. Sci. Eng., 2009, A503: 145
[9] Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J]. Prog. Mater. Sci., 2000, 45: 103
[10] Wang Y C, Longdon T G.Effect of heat treatment on microstructure and microhardness evolution in a Ti-6Al-4V alloy processed by high-pressure torsion[J]. J. Mater. Sci., 2013, 48: 4646
[11] Wang Y C, Longdon T G.Influence of phase volume fractions on the processing of a Ti-6Al-4V alloy by high-pressure torsion[J]. Mater. Sci. Eng., 2013, A559: 861
[12] Ko Y G, Jung W S, Shin D H, et al.Effects of temperature and initial microstructure on the equal channel angular pressing of Ti-6Al-4V alloy[J]. Scr. Mater., 2003, 48: 197
[13] Yilmazer H, Niinomi M, Nakai M, et al.Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion[J]. Mater. Sci. Eng., 2013, C33: 2499
[14] Yilmazer H, Niinomi M, Cho K, et al.Microstructural evolution of precipitation-hardened β-type titanium alloy through high-pressure torsion[J]. Acta Mater., 2014, 80: 172
[15] Cojocaru V D, Raducanu D, Gordin D M, et al.Texture evolution during ARB (Accumulative Roll Bonding) processing of Ti-10Zr-5Nb-5Ta alloy[J]. J. Alloys Compd., 2013, 546: 260
[16] Lin Z J, Wang L Q, Xue X B, et al.Microstructure evolution and mechanical properties of a Ti-35Nb-3Zr-2Ta biomedical alloy processed by equal channel angular pressing (ECAP)[J]. Mater. Sci. Eng., 2013, C33: 4551
[17] Kent D, Wang G, Yu Z T, et al.Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique[J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 405
[18] Semiatin S L, Bieler T R.The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure[J]. Acta Mater., 2001, 49: 3565
[19] Zherebtsov S, Murzinova M, Salishchev G, et al.Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing[J]. Acta Mater., 2011, 59: 4138
[20] Park C H, Kim J H, Yeom J T, et al.Formation of a submicrocrystalline structure in a two-phase titanium alloy without severe plastic deformation[J]. Scr. Mater., 2013, 68: 996
[21] Matsumoto H, Bin L, Lee S H, et al.Frequent occurrence of discontinuous dynamic recrystallization in Ti-6Al-4V alloy with α' martensite starting microstructure[J]. Metall. Mater. Trans., 2013, 44A: 3245
[22] Zhang Z Q, Dong L M, Yang Y, et al.Microstructure refinement of a dual phase titanium alloy by severe room temperature compression[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2604
[23] Pilarczyk J W, Dyja H, Golis B, et al.Effect of roller die drawing on structure, texture and other properties of high carbon steel wires[J]. Met. Mater., 1998, 4: 727
[24] Pilarczyk J W, van Houtte P, Aernoudt E. Effect of hydrodynamic and roller die drawing on the texture of high carbon steel wires[J]. Mater. Sci. Eng., 1995, A197: 97
[25] Asakawa M, Shigeta H, Shimizu A, et al.Experiments on and finite element analyses of the tilting of fine steel wire in roller die drawing[J]. ISIJ Int., 2013, 53: 1850
[26] Nam W J, Bae C M.Microstructural evolution and its relation to mechanical properties in a drawn dual-phase steel[J]. J. Mater. Sci., 1999, 34: 5661
[27] Xu Y F, Yi D Q, Liu H Q, et al.Effects of cold deformation on microstructure, texture evolution and mechanical properties of Ti-Nb-Ta-Zr-Fe alloy for biomedical applications[J]. Mater. Sci. Eng., 2012, A547: 64
[28] Zhang H Y, Zeng W D, Wang G, et al.On the deformation mechanisms and strain rate sensitivity of a metastable β Ti-Nb alloy[J]. Scr. Mater., 2015, 107: 34
[29] Moiseev V N.High-strength titanium alloy VT16 for manufacturing fasteners by the method of cold deformation[J]. Met. Sci. Heat Treat., 2001, 43: 73
[30] Kim H Y, Ikehara Y, Kim J I, et al.Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys[J]. Acta Mater., 2006, 54: 2419
[31] Cahn R W, Haasen P.Physical Metallurgy[M]. 4th Ed., Amsterdam: Elsevier Science, 1996: 1529
[32] Ankem S, Margolin H, Greene C A, et al.Mechanical properties of alloys consisting of two ductile phases[J]. Prog. Mater. Sci., 2006, 51: 632
[33] Ankem S, Margolin H.The role of elastic interaction stresses on the onset of plastic flow for oriented two ductile phase structures[J]. Metall. Trans., 1980, 11A: 963
[34] Greene C A, Ankem S.Modelling of elastic interaction stresses in two-phase materials by FEM[J]. Mater. Sci. Eng., 1995, A202: 103
[35] Wyatt Z, Ankem S.The effect of metastability on room temperature deformation behavior of β and α+β titanium alloys[J]. J. Mater. Sci., 2010, 45: 5022
[36] Langdon T G.Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement[J]. Acta Mater., 2013, 61: 7035
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[10] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[11] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[12] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[13] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[14] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[15] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.