Please wait a minute...
金属学报  2017, Vol. 53 Issue (4): 433-439    DOI: 10.11900/0412.1961.2016.00370
  本期目录 | 过刊浏览 |
加工条件对多相V-Ti-Ni合金的显微组织和氢渗透性能的影响
江鹏1(),袁同心1,于彦东2
1 常州大学机械工程学院 常州 213164
2 哈尔滨理工大学材料科学与工程学院 哈尔滨 150040
Effect of Processing Conditions on Microstructure and Property of Multiphase V-Ti-Ni Alloys for Hydrogen Purifying
Peng JIANG1(),Tongxin YUAN1,Yandong YU2
1 School of Mechanical Engineering, Changzhou University, Changzhou 213164, China
2 School of Materials Science and Engineering,Harbin University of Science and Technology, Harbin 150040, China
全文: PDF(3235 KB)   HTML
摘要: 

将电弧熔炼V55Ti30Ni15合金在800 ℃热处理18 h,并在700 ℃下进行70%压下量的轧制,随后在950 ℃退火3 h,研究不同加工条件对合金显微组织的影响以及显微组织对合金H渗透率的影响。结果表明,不同加工条件导致的合金显微组织对H渗透率影响很大。热处理后,V基体析出了H渗透率较低的NiTi粒子,减少了作为H渗透主体的V基体体积分数,导致合金H渗透率降低。位错对合金H渗透率有很大影响,轧制后合金含有高密度的位错,极大降低了H渗透率;随后的高温退火工艺则使合金位错密度降低,提高了H渗透率。

关键词 V-Ti-Ni多相合金显微组织氢渗透率    
Abstract

The method of separation and purification of hydrogen from a mixed gas based on the permeation of hydrogen through a dense metallic membrane appears as an attractive mean of producing high purity hydrogen at a large scale. V-based alloy membranes with bcc structure are of great interest for hydrogen separation applications due to their low cost and high permeability. The hydrogen flux of the membrane is proportional to its hydrogen permeability and inversely proportional to its thickness. Therefore, V-based alloys should be fabricated in the form of large and thin membranes with the least possible thickness. Rolling process is presently regarded as the most promising route to a large scale fabrication of hydrogen permeable metal membranes. The refractory nature of the most prospective bcc alloys, and their potentially complex compositions, restrict the fabrication techniques which can be applied to form the alloy into a thin foil. In this work, thin sheets of V55Ti30Ni15 alloy were produced by a thermo-mechanical treatment consisting in successive heat treatment, rolling and annealing treatment, and the effect of microstructures resulting from different processing conditions on hydrogen permeability, have been investi gated for the multiphase V55Ti30Ni15 alloy. Precipitation of NiTi particles from V-matrix of V55Ti30Ni15 alloy during heat treatment, reduces the volume fraction of V-matrix contributing mainly to hydrogen permeation, which results in the decreasing of hydrogen permeability. The microstructure of the alloy after heat treatment evolved into a fibrous/lamellar microstructure during hot-rolling deformation, and a significant reduction in hydrogen permeability accompanied this deformation. Subsequent annealing decreased the dislocation density and increased hydrogen permeability. Dislocations have a great impact on hydrogen permeability due to their ability to trap diffusing hydrogen.

Key wordsmultiphase V-Ti-Ni alloy    microstructure    hydrogen permeability
收稿日期: 2016-08-16     
基金资助:江苏省自然科学基金项目No.BK20150268

引用本文:

江鹏,袁同心,于彦东. 加工条件对多相V-Ti-Ni合金的显微组织和氢渗透性能的影响[J]. 金属学报, 2017, 53(4): 433-439.
Peng JIANG, Tongxin YUAN, Yandong YU. Effect of Processing Conditions on Microstructure and Property of Multiphase V-Ti-Ni Alloys for Hydrogen Purifying. Acta Metall Sin, 2017, 53(4): 433-439.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2016.00370      或      https://www.ams.org.cn/CN/Y2017/V53/I4/433

图1  V55Ti30Ni15合金在800 ℃下热处理18 h后的TEM暗场像
图2  V55Ti30Ni15合金在轧制压下量达到70%时的显微组织
图3  轧制态V55Ti30Ni15合金在950 ℃退火3 h后的显微组织
图4  不同加工条件下V55Ti30Ni15合金的XRD谱
图5  不同加工条件下V55Ti30Ni15合金在400 ℃的H渗透率
Membrane Hydrogen permeability at 400 ℃
10-8 molm-1s-1Pa-0.5
Hydrogen pressure difference ΔP
MPa
Pure Pd[31] 1.6 0.6
Pd-Cu[31] 1.4 0.6
As-cast V85Ni15[34] 4.0 0.7
As-cast V41Ti30Ni29[20] 1.02 0.2
As-cast Nb56Ti23Ni21[23] 3.47 0.45
表1  几种具有代表性的金属膜在400 ℃的H渗透率[20,23,31,34]
图6  V55Ti30Ni15合金H渗透方向与显微组织(NiTi和NiTi2)伸长方向的关系
[1] Lubitz W, Tumas W.Hydrogen: An overview[J]. Chem. Rev., 2007, 107: 3900
[2] Adhikari S, Fernando S.Hydrogen membrane separation techniques[J]. Ind. Eng. Chem. Res., 2006, 45: 875
[3] Ward T L, Dao T.Model of hydrogen permeation behavior in palladium membranes[J]. J. Membr. Sci., 1999, 153: 211
[4] Taxak M, Kumar S, Sheelvantra S, et al.Effect of iron on the solubility of hydrogen in tantalum[J]. J. Mater. Sci., 2014, 49: 8471
[5] Xiong L Y, Liu S, Wang L B, et al.Microstructures and hydrogen permeation characteristics of Nb-Ti-Ni alloys[J]. Acta Metall. Sin., 2008, 44: 781
[5] (熊良银, 刘实, 王隆保等. Nb-Ti-Ni合金的显微组织与氢渗透性能[J]. 金属学报, 2008, 44: 781)
[6] Oh J Y, Ko W S, Suh J Y, et al.Enhanced high temperature hydrogen permeation characteristics of V-Ni alloy membranes containing a trace amount of yttrium[J]. Scr. Mater., 2016, 116: 122
[7] Buxbaum R E, Kinney A B.Hydrogen transport through tubular membranes of palladium-coated tantalum and niobium[J]. Ind. Eng. Chem. Res., 1996, 35: 530
[8] Alimov V N, Busnyuk A O, Notkin M E, et al.Hydrogen transport through V-Pd alloy membranes: Hydrogen solution, permeation and diffusion[J]. J. Membr. Sci., 2015, 481: 54
[9] Suzuki A, Yukawa H, Ijiri S, et al.Alloying effects on hydrogen solubility and hydrogen permeability for V-based alloy membranes[J]. Mater. Trans., 2015, 56: 1688
[10] Suzuki A, Yukawa H, Nambu T, et al.Analysis of pressure-composition-isotherms for design of non-Pd-based alloy membranes with high hydrogen permeability and strong resistance to hydrogen embrittlement[J]. J. Membr. Sci., 2016, 503: 110
[11] Nishimura C, Komaki M, Hwang S, et al. V-Ni alloy membranes for hydrogen purification [J]. J. Alloys Compd., 2002, 330-332: 902
[12] Yang J Y, Nishimura C, Komaki M. Effect of H2S on hydrogen permeation of Pd60Cu40/V-15Ni composite membrane [J]. J. Alloys Compd., 2007, 446-447: 575
[13] Zhang Y, Ozaki T, Komaki M, et al.Hydrogen permeation of Pd-Ag alloy coated V-15Ni composite membrane: Effects of overlayer composition[J]. J. Membr. Sci., 2003, 224: 81
[14] Nishimura C, Ozaki T, Komaki M, et al. Hydrogen permeation and transmission electron microscope observations of V-Al alloys [J]. J. Alloys Compd., 2003, 356-357: 295
[15] Paglieri S N, Wermer J R, Buxbaum R E, et al.Development of membranes for hydrogen separation: Pd coated V-10Pd[J]. Energy Mater., 2008, 3(3): 169
[16] Zhang Y, Ozaki T, Komaki M, et al.Hydrogen permeation characteristics of vanadium-aluminium alloys[J]. Scr. Mater., 2002, 47: 601
[17] Roark S E, MacKay R, Mundschau M V. Dense, layered membranes for hydrogen separation [P].US Pat., 7001446, 2006
[18] Kim K H, Shim J H, Lee B J.Effect of alloying elements (Al, Co, Fe, Ni) on the solubility of hydrogen in vanadium: A thermodynamic calculation[J]. Int. J. Hydrogen Energy, 2012, 37: 7836
[19] Adams T M, Mickalonis J.Hydrogen permeability of multiphase V-Ti-Ni metallic membranes[J]. Mater. Lett., 2007, 61: 817
[20] Hashi K, Ishikawa K, Matsuda T, et al. Hydrogen permeation characteristics of (V, Ta)-Ti-Ni alloys [J]. J. Alloys Compd., 2005, 404-406: 273
[21] Jeon S I, Magnone E, Park J H, et al.The effect of temperature and pressure on the hydrogen permeation through Pd-coated Ti26Ni21V53 alloy membrane under different atmospheres[J]. Mater. Lett., 2011, 65: 2495
[22] Hashi K, Ishikawa K, Matsuda T, et al.Hydrogen permeation characteristics of multi-phase Ni-Ti-Nb alloys[J]. J. Alloys Compd., 2004, 368: 215
[23] Magnone E, Jeon S I, Park J H, et al.Relationship between microstructure and hydrogen permeation properties in the multiphase Ni21Ti23Nb56 alloy membranes[J]. J. Membr. Sci., 2011, 384: 136
[24] Ishikawa K, Tokui S, Aoki K.Microstructure and hydrogen permeation of cold rolled and annealed Nb40Ti30Ni30 alloy[J]. Intermetallics, 2009, 17: 109
[25] Luo W, Ishikawa K, Aoki K.Hydrogen permeable Ta-Ti-Ni duplex phase alloys with high resistance to hydrogen embrittlement[J]. J. Alloys Compd., 2008, 460: 353
[26] Hashi K, Ishikawa K, Matsuda T, et al.Microstructure and hydrogen permeability in Nb-Ti-Co multiphase alloys[J]. J. Alloys Compd., 2006, 425: 284
[27] Li X Z, Liu D M, Liang X, et al.Hydrogen transport behavior of as-cast, cold rolled and annealed Nb40Ti30Co30 alloy membranes[J]. J. Membr. Sci., 2016, 514: 294
[28] Ishikawa K, Takano T, Matsuda T, et al.High hydrogen permeability in the Nb-Zr-Ni eutectic alloy containing the primary body-centered-cubic (Nb, Zr) phase[J]. Appl. Phys. Lett., 2005, 87: 081906
[29] Jiang P, Yu Y D.Effect of heat treatment process on microstructure and hardness of V55Ti30Ni15 alloy for hydrogen permeation[J]. Acta Metall. Sin., 2013, 49: 1105
[29] (江鹏, 于彦东. 热处理工艺对透氢V55Ti30Ni15合金的显微组织和硬度的影响[J]. 金属学报, 2013, 49: 1105)
[30] Dolan M D.Non-Pd BCC alloy membranes for industrial hydrogen separation[J]. J. Membr. Sci., 2010, 362: 12
[31] Fleury E, Suh J Y, Kim D I, et al.Hydrogen permeation characteristics of rolled V85Al10Co5 alloys[J]. Curr. Appl. Phys., 2012, 12: 1131
[32] Williamson G K, Smallman R E.III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum[J]. Philos. Mag., 1956, 1: 34
[33] Revay L.X-ray line broadening in electrodeposited gold coatings[J]. Electrodepo. Surf. Treat., 1975, 3: 139
[34] Dolan M D, McLennan K G, Way J D. Diffusion of atomic hydrogen through V-Ni alloy membranes under nondilute conditions[J]. J. Phys. Chem., 2012, 116C: 1512
[35] Nishimura C, Komaki M, Amano M.Hydrogen permeation characteristics of vanadium-nickel alloys[J]. Mater. Trans., 1991, 32: 501
[36] Connor H.Palladium alloy diffusion cells[J]. Platin. Met. Rev., 1962, 6: 130
[37] Kurkela M, Latanision R M.The effect of plastic deformation on the transport of hydrogen in nickel[J]. Scr. Metall., 1979, 13: 927
[38] Hirth J P.Effects of hydrogen on the properties of iron and steel[J]. Metall. Mater. Trans., 1980, 11A: 861
[39] Kumnick A J, Johnson H H.Deep trapping states for hydrogen in deformed iron[J]. Acta Metall., 1980, 28: 33
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[3] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[4] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[5] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[6] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[7] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[8] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[9] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[10] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[11] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[12] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[13] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[14] 何波, 邢盟, 杨光, 邢飞, 刘祥宇. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响[J]. 金属学报, 2019, 55(10): 1251-1259.
[15] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.