Please wait a minute...
金属学报  2017, Vol. 53 Issue (3): 325-334    DOI: 10.11900/0412.1961.2016.00282
  本期目录 | 过刊浏览 |
激光修复300M钢的组织及力学性能研究
刘丰刚,林鑫(),宋衎,宋梦华,韩一帆,黄卫东
西北工业大学凝固技术国家重点实验室 西安 710072
Microstructure and Mechanical Properties of LaserForming Repaired 300M Steel
Fenggang LIU,Xin LIN(),Kan SONG,Menghua SONG,Yifan HAN,Weidong HUANG
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(8688 KB)   HTML
摘要: 

采用激光立体成形技术进行了300M钢修复实验,利用XRD、SEM及动态散斑等手段研究了激光成形修复300M钢沉积态和热处理态的组织及力学性能特征。结果表明,300M钢基材区由马氏体、贝氏体及少量残余奥氏体组成;修复区由顶部的贝氏体组织,中部的马氏体和贝氏体的混合组织,到底部的回火马氏体组织呈现连续转变;热影响区则呈现为不均匀的马氏体组织。经过淬火+回火处理后,各区域的组织变得均匀,均为回火马氏体和贝氏体的混合组织。修复后沉积态试样的拉伸性能远低于锻件标准。但经过热处理后,修复试样的各项力学性能指标均有显著提高。应力-应变测试结果表明,沉积态和热处理态试样在弹性变形阶段的应变都是均匀增加的,而超过最大拉伸强度后,局部应变在修复区急剧增加。这与试样的组织协调变形能力及应变硬化指数有关。

关键词 激光成形修复激光增材制造300M钢显微组织力学性能应力-应变分布    
Abstract

Laser forming repairing (LFR) technology is developed from the laser additive manufacturing, which has a high potential in high strength steel structures' repairing. 300M steel has been widely used in aviation and aerospace vehicles, to provide a high strength for aircraft landing gear and high strength bolts components, which in turn leads to a quick damage due to the severe service environment. If these damaged components can be repaired rapidly, the considerable savings in materials and costs can be achieved. In this work, the microstructure and mechanical properties of the LFRed 300M steel have been investigated. Results showed that the LFRed area can be clearly divided into three areas: the substrate zone (SZ), heat affected zone (HAZ) and repaired zone (RZ). The SZ was consisted of the mixture of martensite, bainite and a small amount of retained austenite. The HAZ presented an uneven martensite. The RZ presented an obvious heterogeneous microstructure, and the bainite, the mixture of martensite and bainite, and tempered martensite from the top to the bottom. After heat treatment, the microstructure became uniform with mixed tempered martensite and bainite. The tensile strength of the as-deposited LFRed 300M steel was far lower than those of the substrate. Its tensile strength and yield strength were 1459 MPa and 1163 MPa, respectively. After heat treatment, tensile strength (1965 MPa), yield strength (1653 MPa), elongation (11.7%) and reduction of area (38.4%) increased significantly and reached the same level of the substrate. Furthermore, compared to the as-deposited sample, the local strain of the RZ increased to 53% after heat treatment, and an obvious necking and breaking up happened as well. The strain hardening exponent of SZ and RZ were 0.1548 and 0.1138, which could be closely related to the compatible deformation capability.

Key wordslaser forming repairing    laser additive manufacturing    300M steel    microstructure    mechanical property    stress and strain distribution
收稿日期: 2016-07-05     
基金资助:国家自然科学基金项目Nos.51323008、51475380和51501154,高等学校学科创新引智计划项目No.08040

引用本文:

刘丰刚,林鑫,宋衎,宋梦华,韩一帆,黄卫东. 激光修复300M钢的组织及力学性能研究[J]. 金属学报, 2017, 53(3): 325-334.
Fenggang LIU, Xin LIN, Kan SONG, Menghua SONG, Yifan HAN, Weidong HUANG. Microstructure and Mechanical Properties of LaserForming Repaired 300M Steel. Acta Metall Sin, 2017, 53(3): 325-334.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2016.00282      或      https://www.ams.org.cn/CN/Y2017/V53/I3/325

图1  拉伸试样截取及加工示意图
图2  激光成形修复300M钢沉积态不同部位的显微组织
图3  沉积态试样不同部位的温度场演变示意图及显微组织形成示意图
图4  激光成形修复300M钢热处理态不同区域的XRD谱
图5  激光成形修复300M钢热处理态不同部位的显微组织
图6  激光成形修复300M钢不同状态的室温拉伸断口形貌
图7  沉积态试样室温拉伸的应力-应变曲线、拉伸过程中沿中心线的应变分布及相应的局部应变分布
图8  热处理态试样室温拉伸的应力-应变曲线、拉伸过程中沿中心线的应变分布及相应的局部应变分布
Sample Tensile Yield Elongation Reduction Fracture location
strength strength % of area
MPa MPa %
Forging standard ≥1925 ≥1630 ≥12.5 ≥50.6 -
Substrate 1993 1624 12.1 41.2 -
As-deposited LFRed 1459±11 1163±73 5.8±0.8 14.6±0.3 Repaired zone
Heat-treated LFRed 1965±12 1653±4 11.7±0.6 38.4±3.2 Repaired zone
表1  300M钢不同状态的室温力学性能
[1] Youngblood J L, Raghavan M.Correlation of microstructure with mechanical properties of 300M steel[J]. Metall. Trans., 1977, 8A: 1439
[2] Tomita Y, Okawa T.Effect of microstructure on mechanical properties of isothermally bainite-transformed 300M steel[J]. Mater. Sci. Eng., 1993, A172: 145
[3] Zhang S S, Li M Q, Liu Y G, et al.The growth behavior of auste-nite grain in the heating process of 300M steel[J]. Mater. Sci. Eng., 2011, A528: 4967
[4] Zhang H P, Wang C X, Du X.Aircraft landing gear with the development of 300M ultra high strength steel and research[J]. J. Harbin Univ. Sci. Technol., 2011, 16(6): 73
[4] (张慧萍, 王崇勋, 杜煦. 飞机起落架用300M超高强钢发展及研究现状[J]. 哈尔滨理工大学学报, 2011, 16(6): 73)
[5] Huang W D, Lin X, Chen J, et al.Laser Solid Forming [M]. Xi'an: Northwestern Polytechnical University Press, 2007: 326
[5] (黄卫东, 林鑫, 陈静等. 激光立体成形 [M]. 西安: 西北工业大学出版社, 2007: 326)
[6] Gadag S P, Srinivasan M N, Mordike B L.Effect of laser processing parameters on the structure of ductile iron[J]. Mater. Sci. Eng., 1995, A196: 145
[7] O?oro J, Ranninger C.Fatigue behaviour of laser welds of high-strength low-alloy steels[J]. J. Mater. Process. Technol., 1997, 68: 68
[8] Kattire P, Paul S, Singh R, et al.Experimental characterization of laser cladding of CPM 9V on H13 tool steel for die repair applications[J]. J. Manuf. Process., 2015, 20: 492
[9] Hu Y P, Chen C W, Mukherjee K.Development of a new laser cla-dding process for manufacturing cutting and stamping dies[J]. J. Mater. Sci., 1998, 33: 1287
[10] Leunda J, Soriano C, Sanz C, et al.Laser cladding of vanadium-carbide tool steels for die repair[J]. Phys. Procedia, 2011, 12: 345
[11] Lin X, Cao Y Q, Wu X Y, et al.Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel[J]. Mater. Sci. Eng., 2012, A553: 80
[12] Li L J.Repair of directionally solidified superalloy GTD-111 by laser-engineered net shaping[J]. J. Mater. Sci., 2006, 41: 7886
[13] Zhang Z H, Lin P Y, Zhou H, et al.Microstructure, hardness, and thermal fatigue behavior of H21 steel processed by laser surface remelting[J]. Appl. Surf. Sci., 2013, 276: 62
[14] Tong X, Dai M J, Zhang Z H.Thermal fatigue resistance of H13 steel treated by selective laser surface melting and CrNi alloying[J]. Appl. Surf. Sci., 2013, 271: 373
[15] Xu Q D, Lin X, Song M H, et al.Microstructure of heat-affected zone of laser forming repaired 2Cr13 stainless steel[J]. Acta Metall. Sin., 2013, 49: 605
[15] (徐庆东, 林鑫, 宋梦华等. 激光成形修复2Cr13不锈钢热影响区的组织研究[J]. 金属学报, 2013, 49: 605)
[16] Liu Q, Wang Y D, Zheng H, et al.TC17 titanium alloy laser melting deposition repair process and properties[J]. Opt. Laser Technol., 2016, 82: 1
[17] Dinda G P, Dasgupta A K, Mazumder J.Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability[J]. Mater. Sci. Eng., 2009, A509: 98
[18] Cong D L, Zhou H, Ren Z N, et al.The thermal fatigue resistance of H13 steel repaired by a biomimetic laser remelting process[J]. Mater. Des., 2014, 55: 597
[19] Sun S D, Liu Q C, Brandt M, et al.Effect of laser clad repair on the fatigue behaviour of ultra-high strength AISI 4340 steel[J]. Mater. Sci. Eng., 2014, A606: 46
[20] Kang M K, Yang Y Q, Zhang X Y, et al.Bainitic transformations in silicon-containing steels[J]. Acta Metall. Sin., 1996, 32: 897
[20] (康沫狂, 杨延清, 张喜燕等. 硅钢中的贝氏体及其转变模型[J]. 金属学报, 1996, 32: 897)
[21] Wang Y D, Tang H B, Fang Y L, et al.Effect of heat treatment on microstructure and mechanical properties of laser melting deposited 1Cr12Ni2WMoVNb steel[J]. Mater. Sci. Eng., 2010, A528: 474
[22] Zhang L, Zhang Y F, Huo L X, et al.Microstructure and properties of 30CrMnSiNi2A steel electron beam welded joints[J]. Trans. China Welding Inst., 2002, 23(1): 73
[22] (张莉, 张玉凤, 霍立兴等. 30CrMnSiNi2A钢焊接接头热处理后的组织与性能[J]. 焊接学报, 2002, 23(1): 73)
[23] Liu F G, Li T J, Wang C X, et al.Effect of postweld heat treatment on microstructure and mechanical properties of 05Cr17Ni4Cu4Nb steel weld joint[J]. Heat Treat. Met., 2010, 35(11): 65
[23] (刘福广, 李太江, 王彩侠等. 焊后热处理对05Cr17Ni4Cu4Nb钢焊接接头组织与性能的影响[J]. 金属热处理, 2010, 35(11): 65)
[24] Qi C L.Effects of heat treatment on microstructure and mechanical properties of D406A steel welded joint [D]. Harbin: Harbin Institute of Technology, 2012
[24] (祁成雷. 热处理对D406A钢焊接接头微观组织和力学性能的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2012)
[25] Wang C C.Properties of Materials [M]. Beijing: Beijing University of Technology Press, 2001: 21
[25] (王从曾. 材料性能学 [M]. 北京: 北京工业大学出版社, 2001: 21)
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[8] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[9] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[10] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[11] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[12] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[13] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[14] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[15] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.