Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 10-18    DOI: 10.11900/0412.1961.2016.00120
  本期目录 | 过刊浏览 |
热处理过程中界面固相反应控制锰硅类氧化物变性的机理研究
刘成松(),叶飞
武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430081
Mechanism on Modification of MnO-SiO2-Type Oxide by Interfacial Solid-State Reaction During Heat Treatment
Chengsong LIU(),Fei YE
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
引用本文:

刘成松,叶飞. 热处理过程中界面固相反应控制锰硅类氧化物变性的机理研究[J]. 金属学报, 2017, 53(1): 10-18.
Chengsong LIU, Fei YE. Mechanism on Modification of MnO-SiO2-Type Oxide by Interfacial Solid-State Reaction During Heat Treatment[J]. Acta Metall Sin, 2017, 53(1): 10-18.

全文: PDF(2660 KB)   HTML
  
摘要: 

采用扩散偶的方法,利用高温共聚焦激光显微镜和高温感应炉研究了1473 K热处理过程中Fe-Mn-Si合金与MnO-SiO2-FeO氧化物的固相反应及其对二者成分及物相的影响规律,并分析了凝固过程中合金与氧化物平衡成分变化情况,揭示了高温界面固相反应控制MnO-SiO2-FeO氧化物变性的内在机理。结果表明,热处理过程中合金与氧化物发生的界面固相反应造成合金内Mn、Si元素的损耗,靠近界面处合金内会形成大量MnO-SiO2颗粒,而氧化物中由于FeO成分的分解,产生了单质Fe颗粒,随热处理时间的延长,MnO和FeO含量分别呈上升和下降的趋势。

关键词 氧化物扩散偶界面固相反应热处理    
Abstract

In order to control physicochemical characteristics of inclusions in steel through appropriate heat treatment process, solid-state interface reaction between solid alloy deoxidized by Mn and Si and MnO-SiO2-FeO oxide during heat treatment was studied. Using confocal scanning laser microscope (CSLM) and high temperature induction furnace, the reaction between the Fe-Mn-Si alloy and MnO-SiO2-FeO oxide during heat treatment at 1473 K and its influence on the compositions and phases in the alloy and oxide were investigated by diffusion couple method. A suitable method for pre-melting oxide and producing diffusion couple of Fe-Mn-Si alloy and MnO-SiO2-FeO oxide was proposed to obtain good contact between them. After that, the diffusion couple sample with Ti foil for reducing oxygen partial pressure and bulk alloy containing the same compositions was sealed in a quartz tube for carrying out subsequent heat treatment experiment. In addition, equilibrium compositions and phases of the oxide and alloy during solidification and the solid-state reaction mechanism between them were analyzed and discussed. Quantitative analysis of each element in alloy and oxide was calibrated by standard sample before analysis. Results showed that solid-state interface reaction and element diffusion between the Fe-Mn-Si alloy and MnO-SiO2-FeO oxide were observed which indicated that the alloy and oxide in the diffusion couple was not equilibrated at 1473 K, even though the liquid phases of them were equilibrated at 1873 K. The activity of FeO in MnO-SiO2-FeO oxide decreased with the decrease of temperature and excess oxygen diffused from oxide to alloy. Mn and Si contents in the alloy were consumed by the chemical reaction and some MnO-SiO2 particles in the alloy near the interface generated. As the heat treatment time increased from 10 h to 50 h, the widths of particle precipitation zone (PPZ) and manganese depleted zone (MDZ) increased from 79 and 120 μm to 138 and 120 μm, respectively. During the heat treatment, the width of MDZ was always greater than that of PPZ. Moreover, due to the separation of the FeO, pure Fe particles formed in the oxide. The MnO and FeO contents in the oxide increased and decreased respectively with the increase of the heat treatment time.

Key wordsoxide    diffusion couple    interfacial solid-state reaction    heat treatment
收稿日期: 2016-04-06     
基金资助:资助项目 国家自然科学基金项目No.51604201
图1  氧化物预熔实验装置示意图
图2  扩散偶样品密封于石英管示意图
图3  扩散偶样品热处理实验温度曲线
表1  图4a中各位置的化学成分分析
Position MnO SiO2 FeO MnS
1 65.1 31.8 3.1 0
2 64.9 31.6 3.5 0
3 64.8 31.8 3.4 0
4 48.7 47.1 4.2 0
5 48.1 47.5 4.4 0
6 77.1 22.7 0 0.2
7 91.5 8.4 0 0.1
  
图4  氧化物预熔黏接实验后、1473 K热处理10和50 h后合金与氧化物界面形貌的EPMA像
Position MnO SiO2 FeO MnS
1 65.6 32.5 1.9 0
2 64.2 33.6 2.2 0
3 65.0 32.9 2.1 0
4 49.8 48.7 1.5 0
5 50.4 47.9 1.7 0
6 64.3 35.7 0 0
7 82.8 17.2 0 0
表2  图4b中各位置的化学成分分析
Position MnO SiO2 FeO MnS
1 66.2 32.6 1.2 0
2 67.1 31.8 1.1 0
3 68.9 30.5 0.6 0
4 54.1 45.2 0.7 0
5 52.0 47.6 0.4 0
6 54.8 45.2 0 4.7
7 63.6 36.4 0 2.7
表3  图4c中各位置的化学成分分析
图5  氧化物预熔黏接实验后、1473 K热处理10和50 h后扩散偶合金中Mn和Si含量变化
图6  氧化物预熔黏接实验后、1473 K热处理10和50 h后扩散偶合金中颗粒析出区域和Mn元素消耗区域宽度变化
图7  氧化物预熔黏接实验后、1473 K热处理10和50 h后扩散偶合金中析出颗粒成分和尺寸分布
图8  凝固时Fe-Mn-Si合金与MnO-SiO2-FeO氧化物成分及物相变化
图9  平衡时合金中氧活度与氧化物中FeO的活度随温度变化情况
图10  合金基体与夹杂物界面固相反应机理示意图
[1] Hou Y H, Zheng W, Wu Z H, et al.Study of Mn absorption by complex oxide inclusions in Al-Ti-Mg killed steels[J]. Acta Mater., 2016, 118: 8
[2] Ono H, Nakajima K, Ibuta T, et al.Equilibrium relationship between the oxide compounds in MgO-Al2O3-Ti2O3 and molten iron at 1873 K[J]. ISIJ Int., 2010, 50: 1955
[3] Zhang B W, Deng K, Lei Z S, et al.A mathematical model on coalescence and removal of inclusion particles in continuous casting tundish[J]. Acta Metall. Sin., 2004, 40: 623
[3] (张邦文, 邓康, 雷作胜等. 连铸中间包中夹杂物聚合与去除的数学模型[J]. 金属学报, 2004, 40: 623)
[4] Lei H, He J C.Fluid flow and inclusion's collision-growth in the slab continuous casting mold[J]. Acta Metall. Sin., 2007, 43: 1195
[4] (雷洪, 赫冀成. 板坯连铸机内钢液流动和夹杂物碰撞长大行为[J]. 金属学报, 2007, 43: 1195)
[5] Hasegawa M, Takeshita K.Strengthening of steel by the method of spraying oxide particles into molten steel stream[J]. Metall. Trans., 1978, 9B: 383
[6] Zhang J, Wang F M, Li C R.Thermodynamic analysis of the compositional control of inclusions in cutting-wire steel[J]. Int. J. Miner. Metall. Mater., 2014, 21: 647
[7] Yang S F, Wang Q Q, Zhang L F, et al.Formation and modification of MgOAl2O3-based inclusions in alloy steels[J]. Metall. Mater. Trans., 2012, 43B: 731
[8] Zhou B W, Li G Q, Wan X L, et al.In-situ observation of grain refinement in the simulated heat-affected zone of high-strength low-alloy steel by Zr-Ti combined deoxidation[J]. Met. Mater. Int., 2016, 22: 267
[9] Ono H, Ibuta T.Equilibrium relationships between oxide compounds in MgO-Ti2O3-Al2O3 with iron at 1873 K and variations in stable oxides with temperature[J]. ISIJ Int., 2011, 51: 2012
[10] Wang X H, Li X G, Li Q, et al.Control of string shaped non-metallic inclusions of CaO-Al2O3 system in X80 pipeline steel plates[J]. Acta Metall. Sin., 2013, 49: 553
[10] (王新华, 李秀钢, 李强等. X80管线钢板中条串状CaO-Al2O3系非金属夹杂物的控制[J]. 金属学报, 2013, 49: 553)
[11] Park J H, Kim D S.Effect of CaO-Al2O3-MgO slags on the formation of MgO-Al2O3 inclusions in ferritic stainless steel[J]. Metall. Mater. Trans., 2005, 36B: 495
[12] Lee C, Nambu S, Inoue J, et al.Ferrite formation behaviors from B1 compounds in steels[J]. ISIJ Int., 2011, 51: 2036
[13] Takahashi I, Sakae T, Yoshida T.Changes of nonmetallic inclusion by heating[J]. Tetsu Hagané, 1967, 53: 350
[13] (高橋市朗, 栄豊幸, 吉田毅. 非金属介在物の加熱による変化[J]. 鉄と鋼, 1967, 53: 350)
[14] Takahashi I, Sakae T, Yoshida T.Changes of the nonmetallic inclusion by forging and rolling[J]. Tetsu Hagané, 1967, 53: 352
[14] (高橋市朗, 栄豊幸, 吉田毅. 非金属介在物の鍛造および压延加工による変化[J]. 鉄と鋼, 1967, 53: 352)
[15] Takano K, Nakao R, Fukumoto S, et al.Grain size control by oxide dispersion in austenitic stainless steel[J]. Tetsu Hagané, 2003, 89: 61
[15] 6(高野光司, 中尾隆二, 福元成雄等. オーステナイト系ステンレス鋼の酸化物の分散を利用した結晶粒径調整[J]. 鉄と鋼, 2003, 89: 616)
[16] Kim H S, Lee H G, Oh K S.MnS precipitation in association with manganese silicate inclusions in Si/Mn deoxidized steel[J]. Metall. Mater. Trans., 2001, 32A: 1519
[17] Wakoh M, Sawai T, Mizoguchi S.Effect of S content on the MnS precipitation in steel with oxide nuclei[J]. ISIJ Int., 1996, 36: 1014
[18] Wakoh M, Sawai T, Mizoguchi S.Effect of oxide particles on MnS precipitation in low S steels[J]. Tetsu Hagané, 1992, 78: 1697
[18] (若生昌光, 澤井隆, 溝口庄三. 低硫鋼でのMnS析出に及ぼす鋼中酸化物の影響[J]. 鉄と鋼, 1992, 78: 1697)
[19] Shibata H, Tanaka T, Kimura K, et al.Composition change in oxide inclusions of stainless steel by heat treatment[J]. Ironmaking Steelmaking, 2010, 37: 522
[20] Shibata H, Kimura K, Tanaka T, et al.Mechanism of change in chemical composition of oxide inclusions in Fe-Cr alloys deoxidized with Mn and Si by heat treatment at 1473 K[J]. ISIJ Int., 2011, 51: 1944
[21] Choi W, Matsuura H, Tsukihashi F.Changing behavior of non-metallic inclusions in solid iron deoxidized by Al-Ti addition during heating at 1473 K[J]. ISIJ Int., 2011, 51: 1951
[22] Ohba Y, Yamashita Y, Ohno K, et al.Formation mechanism of oxide particles in subscale layer around surface cracks of steel[J]. Tetsu Hagané, 2009, 95: 531
[22] (大塲康英, 山下祐樹, 大野光一郎等. 鋼材表面疵近傍におけるサブスケール層内の粒状酸化物の生成機構[J]. 鉄と鋼, 2009, 95: 531)
[23] Kim K H, Kim S J, Shibata H, et al.Reaction between MnO-SiO2-FeO oxide and Fe-Mn-Si solid alloy during heat treatment[J]. ISIJ Int., 2014, 54: 2144
[24] Kim K H, Shibata H, Kitamura S.Influence of sulfur on the reaction between MnO-SiO2-FeO oxide and Fe-Mn-Si solid alloy by heat treatment[J]. ISIJ Int., 2014, 54: 2678
[25] Sasaki R, Ueda S, Kim S J, et al.Reaction behavior between B4C, 304 grade of stainless steel and Zircaloy at 1473 K[J]. J. Nucl. Mater., 2016, 477: 205
[26] Hino M, Ito K.Thermodynamic Data for Steelmaking [M]. Sendai: Tohoku University Press, 2010: 167
[27] Ban-Ya S.Mathematical expression of slag-metal reactions in steelmaking process by quadratic formalism based on the regular solution model[J]. ISIJ Int., 1993, 33: 2
[28] The Japan Institute of Metals. Physical Chemistry of Metals [M]. Tokyo: Maruzen Press, 1996: 198
[29] Turkdogan E T.Physical Chemistry of High Temperature Technology [M]. New York: Academic Press, 1980: 81
[30] Zhang J, Cheng G G, Wang L J, et al.Computational Thermodynamics of Metallurgical Melts and Solutions [M]. Beijing: Metallurgical Industry Press, 2007: 254
[30] (张鉴, 成国光, 王力军等. 冶金熔体和溶液的计算热力学 [M]. 北京: 冶金工业出版社, 2007: 254)
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[3] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[4] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[5] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[6] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[7] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[8] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[9] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.
[10] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[11] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[12] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[13] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
[14] 王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.
[15] 王悦, 王继杰, 张昊, 赵泓博, 倪丁瑞, 肖伯律, 马宗义. 热处理对激光选区熔化AlSi10Mg合金显微组织及力学性能的影响[J]. 金属学报, 2021, 57(5): 613-622.