|
|
C同时提高马氏体钢强度和塑性的原理和机制 |
戎咏华,陈乃录( ) |
上海交通大学材料科学与工程学院 上海 200240 |
|
The Principle and Mechanism of Enhancement of Both Strength and Ductility of Martensitic Steels by Carbon |
Yonghua RONG,Nailu CHEN( ) |
School of Materials Science and Enigineering, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
戎咏华,陈乃录. C同时提高马氏体钢强度和塑性的原理和机制[J]. 金属学报, 2017, 53(1): 1-9.
Yonghua RONG,
Nailu CHEN.
The Principle and Mechanism of Enhancement of Both Strength and Ductility of Martensitic Steels by Carbon[J]. Acta Metall Sin, 2017, 53(1): 1-9.
[1] | Pierman A P, Bouaziz O, Pardoen T, et al.The influence of microstructure and composition on the plastic behaviour of dual-phase steels[J]. Acta Mater., 2014, 73: 298 | [2] | Chang G L, Kim S J, Lee T H, et al.Effects of volume fraction and stability of retained austenite on formability in a 0.1C-1.5Si-1.5Mn-0.5Cu TRIP-aided cold-rolled steel sheet[J]. Mater. Sci. Eng., 2004, A371: 16 | [3] | Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Mater., 2003, 51: 2611 | [4] | Speer J G, Edmonds D V, Rizzo F C, et al.Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 219 | [5] | Hsu T Y (Xu Z Y). Design of structure, composition and heat treatment process for high strength steel [J]. Mater. Sci. Forum., 2007, 561-565: 2283 | [6] | Ritchie R O.The conflicts between strength and toughness[J]. Nat. Mater., 2011, 10: 817 | [7] | Wang X D, Zhong N, Rong Y H, et al.Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process[J]. J. Mater. Res., 2009, 24: 260 | [8] | Rashid M S.High-strength, low-alloy steels[J]. Science, 1980, 208: 862 | [9] | Krauss G.Deformation and fracture in martensitic carbon steels tempered at low temperatures[J]. Metall. Mater. Trans., 2001, 32A: 861 | [10] | Zhang K, Xu W Z, Guo Z H, et al.Effects of novel Q-P-T and traditional Q-T processes on the microstructure and mechanical properties of martensitic steels with different carbon content[J]. Acta Metall. Sin., 2011, 47: 489 | [10] | (张柯, 许为宗, 郭正洪等. 新型Q-P-T和传统Q-T工艺对不同C含量马氏体钢组织和力学性能的影响[J]. 金属学报, 2011, 47: 489) | [11] | Qin S W, Liu Y, Hao Q G, et al.Ultrahigh ductility, high-carbon martensitic steel[J]. Metall. Mater. Trans., 2016, 47A: 4853 | [12] | Qin S W, Liu Y, Hao Q G, et al.The mechanism of high ductility for novel high-carbon quenching-partitioning-tempering martensitic steel[J]. Metall. Mater. Trans., 2015, 46A: 4047 | [13] | Hao Q G, Qin S W, Liu Y, et al.Effect of retained austenite on the dynamic tensile behavior of a novel quenching-partitioning-tempering martensitic steel[J]. Mater. Sci. Eng., 2016, A662: 16 | [14] | Qin S W, Liu Y, Hao Q G, et al.High carbon microalloyed martensitic steel with ultrahigh strength-ductility[J]. Mater. Sci. Eng., 2016, A663: 151 | [15] | Chatterjee S, Bhadeshia H K D H. TRIP-assisted steels: Cracking of high-carbon martensite[J]. Mater. Sci. Technol., 2006, 22: 645 | [16] | Zhang K, Liu P, Li W, et al.High strength-ductility Nb-microalloyed low martensitic carbon steel: Novel process and mechanism[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 1264 | [17] | Rong Y H.Advanced Q-P-T steels with ultrahigh strength-high ductility[J]. Acta Metall. Sin., 2011, 47: 1483 | [17] | (戎咏华. 先进超高强度-高塑性Q-P-T钢[J]. 金属学报, 2011, 47: 1483) | [18] | Sugimoto K I, Iida T, Sakaguchi J, et al.Retained austenite characteristics and tensile properties in a TRIP type bainitic sheet steel[J]. ISIJ Int., 2000, 40: 902 | [19] | Chinh N Q, Horváth G, Horita Z, et al.A new constitutive relationship for the homogeneous deformation of metals over a wide range of strain[J]. Acta Metall., 2004, 52: 3555 | [20] | Zackay V F, Parker E R, Fahr D, et al.The enhancement of ductility in high-strength steels[J]. ASM. Trans. Quart., 1967, 60: 252 | [21] | Webster D.Increasing toughness of martensitic stainless steel AFC 77 by control of retained austenite content ausforming and strain aging. ASM Trans. Quart., 1968, 61: 816 | [22] | Zhang K, Zhang M H, Guo Z H, et al.A new effect of retained austenite on ductility enhancement in high-strength quenching-partitioning-tempering martensitic steel[J]. Mater. Sci. Eng., 2011, A528: 8486 | [23] | Wang Y, Zhang K, Guo Z H, et al.A new effect of retained austenite on ductility enhancement of low carbon Q-P-T steel[J]. Acta Metall. Sin., 2012, 48: 641 | [23] | (王颖, 张柯, 郭正洪等. 残余奥氏体增强低碳Q-P-T钢塑性的新效应[J]. 金属学报, 2012, 48: 641) | [24] | Wang Y, Zhang K, Guo Z H, et al.A new effect of retained austenite on ductility enhancement in high strength bainitic steel[J]. Mater. Sci. Eng., 2012, A552: 288 | [25] | Koistinen D P, Marburger R E.A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metall., 1959, 7: 59 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|