Please wait a minute...
金属学报  2016, Vol. 52 Issue (9): 1089-1095    DOI: 10.11900/0412.1961.2015.00655
  论文 本期目录 | 过刊浏览 |
激光选区熔化成形K4202镍基铸造高温合金的组织和性能*
黄文普,喻寒琛,殷杰,王泽敏(),曾晓雁
华中科技大学武汉光电国家实验室, 武汉 430074
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF K4202 CAST NICKEL BASE SUPERALLOY FABRICATED BY SELECTIVE LASER MELTING
Wenpu HUANG,Hanchen YU,Jie YIN,Zemin WANG(),Xiaoyan ZENG
Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(1355 KB)   HTML
  
摘要: 

针对激光选区熔化(selective laser melting, SLM)制造K4202合金复杂金属零件在航空航天等领域的应用需求, 以K4202合金粉末为材料, 研究了该合金的SLM成形工艺、成形态和热处理后的显微组织和力学性能. 结果表明, K4202合金SLM成形试样显微组织由树枝晶和等轴晶构成, 树枝晶生长方向多与熔池边界近似垂直. 固溶+时效处理后, 由于再结晶的发生, SLM成形所形成的树枝晶结构完全消失, 同时晶界和晶内有金属碳化物析出. 时效处理后的组织与SLM成形态相比, 变化并不明显, 其树枝晶结构保存较完整, 晶界处同样有碳化物析出. SLM成形试样的拉伸性能优于传统铸造方法, 通过固溶+时效处理和时效处理, 试样的屈服强度、抗拉强度均提升显著, 但塑性下降明显, 其中时效处理后的拉伸强度最高.

关键词 K4202合金激光选区熔化成形工艺显微组织力学性能    
Abstract

As a cast nickel base superalloy, K4202 is mainly used in aircraft engines due to its high strengths at elevated temperatures, excellent resistance to hot corrosion and favorable weldability. K4202 alloy is usually fabricated by the conventional casting method and mechanical processing, along with macro-segregation and excessive tool wear. As one of the most promising additive manufacturing technologies, selective laser melting (SLM) is able to manufacture high-performance and complex components. According to the requirement of selective laser melting manufactured metal parts with complex structures in aerospace and other fields, K4202 alloy was used as material for SLM in this research and the forming technology, microstructure and mechanical properties of SLMed and heat-treated samples were studied. The results show that the microstructure of samples formed by SLM is composed of dendrites and isometric crystal. The growing direction of dendrites is nearly perpendicular to melt pool traces in most cases. The dendrite structures disappear completely after solution+ageing heat treatment on account of recrystallization and metal carbide precipitates in grains and at grain boundaries. The precipitates are able to improve the strength of the grain boundary due to the pinning effect. The microstructure has no significant changes after ageing heat treatment, but carbide precipitates at grain boundaries as well. The microhardness of SLM samples is uniform on cross section and vertical section. After solution+ageing and ageing heat treatment, there is a significant improvement on the microhardness. The mechanical properties for as-fabricated samples are superior to those of the cast K4202. Besides, the yield strength and tensile strength increase clearly after heat treatments and the mechanical properties is the highest after ageing heat treatment. This is because of the precipitation of γ' strengthening phases. However, the obvious decrease in the ductility occurs at the same time.

Key wordsK4202 alloy    selective laser melting    forming technology    microstructure    mechanical property
收稿日期: 2015-12-22     
基金资助:* 国家高技术研究发展计划资助项目2013AA031606

引用本文:

黄文普,喻寒琛,殷杰,王泽敏,曾晓雁. 激光选区熔化成形K4202镍基铸造高温合金的组织和性能*[J]. 金属学报, 2016, 52(9): 1089-1095.
Wenpu HUANG, Hanchen YU, Jie YIN, Zemin WANG, Xiaoyan ZENG. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF K4202 CAST NICKEL BASE SUPERALLOY FABRICATED BY SELECTIVE LASER MELTING. Acta Metall Sin, 2016, 52(9): 1089-1095.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00655      或      https://www.ams.org.cn/CN/Y2016/V52/I9/1089

图1  拉伸试样示意图
图2  K4202合金粉末形貌的SEM像
图3  K4202合金激光选区熔化(SLM)成形态纵截面和横截面显微组织的OM和SEM像
图4  HT1试样纵截面显微组织的OM和SEM像及EDS分析结果
图5  HT2试样纵截面显微组织的OM和SEM像
图6  不同处理条件下K4202合金试样的XRD谱
图7  不同处理条件下K4202合金试样的显微硬度
图8  不同状态下K4202合金试样的拉伸曲线
表1  不同状态下K4202合金的拉伸性能
[1] Wang J M, Shao C, Zhao M H, Cai Q K.Mod Manuf Eng, 2007; (9): 91
[1] (王建明, 邵冲, 赵明汉, 才庆魁. 现代制造工程, 2007; (9): 91)
[2] Costes J P, Guillet Y, Poulachon G, Dessoly M.Int J Mach Tools Manuf, 2007; 47: 1081
[3] Qi H, Azer M, Ritter A.Metall Mater Trans, 2009; 40A: 2410
[4] Zhang D Y, Niu W, Cao X Y, Liu Z. Mater Sci Eng, 2015; A644: 32
[5] Zhang B J, Zhao G P, Zhang W Y, Huang S, Chen S F.Acta Metall Sin, 2015; 51: 1227
[5] (张北江, 赵光普, 张文云, 黄烁, 陈石富. 金属学报, 2015; 51: 1227)
[6] Tian Z J, Gu D D, Shen L D, Xie D Q, Wang D S.Aeron Manuf Technol, 2015; (11): 38
[6] (田宗军, 顾冬冬, 沈理达, 谢德巧, 王东生. 航空制造技术, 2015; (11): 38)
[7] Chen J L, Dong P, Zhang K, He J W, Liang X K.Electromach Mould, 2014; (1): 66
[7] (陈济轮, 董鹏, 张昆, 何京文, 梁晓康. 电加工与模具, 2014; (1): 66)
[8] Cui C X, Hu B M, Zhao L C.Mater Des, 2011; 32: 1684
[9] Yadroitsev I, Smurov I.Phys Procedia, 2010; 5: 551
[10] Vilaro T.Mater Sci Eng, 2012; A534: 446
[11] Kanagarajah P, Brenne F, Niendorf T.Mater Sci Eng, 2013; A588: 188
[12] Wei K W, Wang Z M, Zeng X Y.Mater Lett, 2015; 156: 187
[13] Zhang H, Zhu H H, Qi T, Hu Z H, Zeng X Y.Mater Sci Eng, 2016; A656: 47
[14] Pauly S, L?ber L, Romy P.Mater Today, 2013; 16: 37
[15] Chlebus E, Gruber K, Ku?nicka B, Kurzac J, Kurzynowski T.Mater Sci Eng, 2015; A638: 647
[16] Shi Y S, Lu Z L, Zhang W X, Huang S H, Chen G Q.Chin Surf Eng, 2006; 19(5+): 150
[16] (史玉升, 鲁中良, 章文献, 黄树槐, 陈国清. 中国表面工程, 2006; 19(5+): 150)
[17] Song B, Dong S J, Coddet P, Liao H L, Coddet C.Mater Des, 2014; 53: 1
[18] Wang Z M, Guan K, Gao M, Li X Y, Chen X F, Zeng X Y.J Alloys Compd, 2012; 513: 518
[19] Mumtaz K A, Hopkinson N.J Mater Process Technol, 2010; 210: 279
[20] Li S, Wei Q S, Shi Y S, Zhu Z C, Zhang D Q.J Mater Sci Technol, 2015; 31: 946
[21] Harrison N J, Todd I, Mumtaz K. Acta Mater, 2015; 94: 59
[22] Bi G J, Sun C N, Chen H C, Ng F L, Ma C C K.Mater Des, 2014; 60: 401
[23] Kunze K, Etter T, Gr?sslin J, Shklover V.Mater Sci Eng, 2015; A620: 213
[24] Rickenbacher L, Etter T, Hovel S.Rapid Prototyping J, 2013; 19: 282
[25] Huang Q Y, Li H K.Superalloy. Beijing: Metallurgical Industry Press, 2000: 6
[25] (黄乾尧, 李汉康. 高温合金. 北京:冶金工业出版社, 2000: 6)
[26] Liu Q C, Elambasseril J, Sun S J, Leary M, Brandt M, Sharp P K. Adv Mater Res, 2014; 891: 1519
[27] Loh L E, Liu Z H, Zhang D Q, Mapar M, Sing S L, Chua C K, Yeong W Y.Virtual Phy Prototyping, 2014; 9: 11
[28] He L Z, Zheng Q, Sun X F, Guan H R, Hu Z Q, Tieu A K, Lu C, Zhu H T.Mater Sci Eng, 2005; A397: 297
[29] Guo J T.Materials Science and Engineering for Superalloys. Beijing: Science Press, 2008: 322
[29] (郭建亭. 高温合金材料学. 北京: 科学出版社, 2008: 322)
[30] Vilaro T, Colin C, Bartout J D, Nazé L, Sennour M.Mater Sci Eng, 2012; A534: 446
[31] Song K, Yu K, Lin X, Chen J, Yang H O, Huang W D.Acta Metall Sin, 2015; 51: 935
[31] (宋衎, 喻凯, 林鑫, 陈静, 杨海欧, 黄卫东. 金属学报, 2015; 51: 935)
[32] Shao C, Li J T, Wu J T, Zhao M H.In: Zhang W ed., Proc 11th China Superalloys Conference, Beijing: Metallurgical Industry Press, 2007: 364
[32] (邵冲, 李俊涛, 吴剑涛, 赵明汉. 见: 张卫主编, 第十一届中国高温合金年会论文集, 北京: 冶金工业出版社, 2007: 364)
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[9] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[10] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[11] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[12] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[13] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[14] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[15] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.