Please wait a minute...
金属学报  2016, Vol. 52 Issue (2): 249-256    DOI: 10.11900/0412.1961.2015.00309
  论文 本期目录 | 过刊浏览 |
{112}<111>孪生的形核和长大及终止的ω点阵机制*
吴松全1,2,杨义3,李阁平1(),平德海4,胡青苗1,杨锐1
1) 中国科学院金属研究所, 沈阳 110016
2) 中国科学院福建物质结构研究所光电材料化学与物理重点实验室, 福州 350002
3) 宝钢集团有限公司中央研究院(技术中心), 上海 201900
4) 中国石油大学(北京)材料科学与工程系, 北京 102249
ω LATTICE MECHANISM OF {112}<111> TWINNING NUCLEATION AND GROWTH AND TERMINATION
Songquan WU1,2,Yi YANG3,Geping LI1(),Dehai PING4,Qingmiao HU1,Rui YANG1
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2) Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on The Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
3) Research Institute (R&D center), Baosteel Group Corporation, Shanghai 201900, China
4) Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249, China;
引用本文:

吴松全,杨义,李阁平,平德海,胡青苗,杨锐. {112}<111>孪生的形核和长大及终止的ω点阵机制*[J]. 金属学报, 2016, 52(2): 249-256.
Songquan WU, Yi YANG, Geping LI, Dehai PING, Qingmiao HU, Rui YANG. ω LATTICE MECHANISM OF {112}<111> TWINNING NUCLEATION AND GROWTH AND TERMINATION[J]. Acta Metall Sin, 2016, 52(2): 249-256.

全文: PDF(6499 KB)   HTML
  
摘要: 

针对体心立方(bcc)结构金属及合金{112}<111>孪生的ω点阵机制, 利用点阵模型详解了bcc结构金属及合金{112}<111>孪晶形核、长大和终止全过程. 模型揭示了孪晶可以通过ω→bcc转变过程形成孪晶核胚, 再通过孪晶核胚生长或合并的方式长大, 最终与特殊位向ω相作用受阻而停止. 该机制说明了{112}<111>类型孪晶是一种相变孪晶.

关键词 金属和合金孪晶相变ω点阵    
Abstract

{112}<111>-type twin is a common twinning structure in quenched carbon steel. As carbon content increases, the density of the twin becomes high in the quenched state. Researchers have suggested that understanding such twinning mechanism may help us to understand the martensitic transformation in steel. {112}<111>-type twin is also commonly observed in other body centered cubic (bcc) metals and alloys, especially deformed under the conditions of low temperatures and/or high strain rates. Yet, due to the intrinsic non-close-packed structure and the rapid speed of twinning process, the mechanisms of twinning nucleation, growth and termination have not been clearly understood although phenomenological mechanisms such as the classical shearing mechanism, dislocation mechanism, or shuffling mechanism, etc., were proposed. Recently, after reviewing numerous investigations on {112}<111>-type twinning process both experimentally and theoretically in bcc metals and alloys, it was found that the twinning boundaries are always embedded with ω phase, i.e., the displacement of the first layer of the twin is 1/12 <111> for ω instead of 1/6 <111> for twin, thus, an ω phase-related {112}<111>-type twinning mechanism (so-called ω lattice mechanism) in our previous study is proposed. In order to better understand the ω lattice mechanism, in this work, a detailed description of the whole process of nucleation, growth and termination of the {112}<111>-type twinning was offered by using the atomic lattice model. The model shows that the twin could nucleate during ω→bcc transition process, and then grow up by extending or merging of twin embryos, and finally terminate during encountering the different ω variants. Such two-dimensional atomic model can be extended to three-dimensional one, which can finally explain the formation mechanism of an internal twin in one bcc crystal. Moreover, the model suggests that the diffuse ω lattice (ωdiff) between the ideal ω lattice and bcc lattice (in the twin boundary) plays an important role in promoting the transition of ω↔bcc during twinning nucleation and growth processes. The results suggest that the {112}<111>-type twins are phase transition twin or phase transformation product.

Key wordsmetal and alloy    twin    phase transformation    ωlattice
收稿日期: 2015-06-15     
基金资助:*国家自然科学基金资助项目51271200
图1  {112}<111>孪生过程
图2  bcc→ω转变
图3  {112}<111>孪生与ω转变间的关系
图4  12ˉ1)[111]孪晶的形核过程
图5  12ˉ1)[111]孪晶的生长
图6  12ˉ1)[111]孪晶的停止
ωij ωi1 ωi2 ωi3
ω1j 0, 1/12[111], -1/12[111] 1/12[111], 1/6[111], -1/4[111] -1/12[111], 1/4[111], -1/6[111]
ω2j 0, 1/12[311], -1/12[311] 1/12[1ˉ11], 1/6[111], -1/12[133] -1/12[1ˉ11], 1/12[133], -1/6[111]
ω3j 0, 1/12[113], -1/12[113] 1/12111ˉ, 1/6[111], -1/12[331] -1/12111ˉ, 1/12[331], -1/6[111]
ω4j 0, 1/12[131], -1/12[131] 1/1211ˉ1], 1/6[111], -1/12[313] -1/1211ˉ1], 1/12[313], -1/6[111]
表1  12ˉ1)[111]孪生所需ωij的原子位移
[1] Christian J W, Mahajan S.Prog Mater Sci, 1995; 39: 1
[2] Zhu Y T, Liao X Z, Wu X L.Prog Mater Sci, 2012; 57: 1
[3] Clark R, Craig G B.Prog Met Phys, 1952; 3: 117
[4] Buerger M J.Am Mineral, 1945; 30: 469
[5] Kelly A.Proc Phys Soc, 1953; 66A: 403
[6] Cottrell A H, Bilby B A.Philos Mag, 1951; 42: 573
[7] Frank F C, Read Jr W T.Phys Rev, 1950; 79: 722
[8] Hirth J P, Lothe J.Theory of Dislocations. New York: Wiley, 1968: 728
[9] Lagerlöf K P D.Acta Metall, 1993; 41: 2143
[10] Yang Y, Li G P, Wang H, Wu S Q, Zhang L C, Li Y L, Yang K.Scr Mater, 2012; 66: 211
[11] Ogata S, Li J, Yip S.Phys Rev, 2005; 71B: 224102
[12] Ping D H, Cui C Y, Yin F X, Yamabe-Mitarai Y.Scr Mater, 2006; 54: 1305
[13] Sukedai E, Shimoda M, Nishizawa H, Nako Y. Mater Trans, 2011; 52: 324
[14] Hatt B A, Roberts J A.Acta Metall, 1960; 8: 575
[15] Hatt B A, Roberts J A, Williams G I.Nature, 1957; 180: 1406
[16] Jackson W A, Perkins A J, Hehemann R F.Metall Trans, 1970; 1B: 2014
[17] Hsiung L M, Lassila D H.Acta Mater, 2000; 48: 4851
[18] Shao G, Tsakiropoulos P.Acta Mater, 2000; 48: 3671
[19] Cheng G M, Yuan H, Jian W W, Xu W Z, Millett P C, Zhu Y T.Scr Mater, 2012; 68: 130
[20] Ayer R, Bendel L P, Zackay V F.Metall Trans, 1992; 23A: 2447
[21] Ping D H, Geng W T.Mater Chem Phys, 2013; 139: 830
[22] Ping D H, Yin J, Liu W Q, Su Y J, Rong L J, Zhao X Q.Acta Metall Sin, 2013; 49: 769
[22] (平德海, 殷匠, 刘文庆, 宿彦京, 戎利建, 赵新青. 金属学报, 2013; 49: 769)
[23] Vítek V.Scr Metall, 1970; 4: 725
[24] Bristowe P D, Crocker A G.Philos Mag, 1975; 31: 503
[25] Wu S Q, Ping D H, Yamabe-Mitarai Y, Xiao W L, Yang Y, Hu Q M, Li G P, Yang R.Acta Mater, 2014; 62: 122
[26] Jamieson J C.Science, 1963; 140: 72
[27] Williams J C, De Fontaine D D, Paton N E.Metall Trans, 1973; 4: 2701
[28] Brotzen F R, Harmon E L, Troiano A R.J Met, 1955; 7: 413
[29] Nelson R S, Hudson J A, Mazey D J.J Nucl Mater, 1972; 44: 318
[30] Sikka S K, Vohra Y K, Chidambaram R.Prog Mater Sci, 1982; 27: 245
[31] Fontaine D D, Paton N E, Williams J C.Acta Metall, 1971; 19: 1153
[32] Wasilewski R J.Metall Trans, 1970; 1B: 2641
[33] Hall E O.Twinning and Diffusionless Transformations in Crystals. London: Butterworths Scientific Publications, 1954: 1
[34] Klassen-Nekhlyudova M V, translated by Bradley J E S. Mechanical Twinning of Crystals. New York: Consultants Bureau, 1964: 106
[35] Ping D H.Acta Metall Sin (Engl Lett), 2014; 27: 1
[36] Ping D H.Acta Metall Sin (Engl Lett), 2015; 28: 663
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[5] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[6] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[7] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[8] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[9] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[10] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[11] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[12] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[13] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[14] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[15] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.