Please wait a minute...
金属学报  2015, Vol. 51 Issue (12): 1500-1506    DOI: 10.11900/0412.1961.2015.00251
  本期目录 | 过刊浏览 |
316L奥氏体不锈钢低温表面渗碳的数值分析*
彭亚伟,巩建鸣(),荣冬松,姜勇,付明辉,余果
南京工业大学机械与动力工程学院, 南京 211816
NUMERICAL ANALYSIS OF LOW-TEMPERATURE SURFACE CARBURIZATION FOR 316L AUSTENITIC STAINLESS STEEL
Yawei PENG,Jianming GONG(),Dongsong RONG,Yong JIANG,Minghui FU,Guo YU
School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816
全文: PDF(811 KB)   HTML
摘要: 

针对316L奥氏体不锈钢表面强化, 进行了低温表面渗碳实验并测量了渗后试样渗碳层内C浓度沿深度方向的分布. 建立了以“陷阱-去陷阱”质量传递机制为基础的动力学模型, 认为Cr原子在C的扩散过程中对C原子具有陷阱作用, 利用该模型计算出渗后试样中C浓度沿渗层深度方向的分布, 并与实验结果进行比较. 结果表明, 实验测得的C浓度沿渗层深度方向的分布形状呈现凸状, 与简单Fick定律得出来的结果不同, 而基于“陷阱-去陷阱”模型得到的计算结果与实验结果符合较好, 表明陷阱作用在C扩散过程中起重要作用. Cr原子通过对C原子陷阱作用, 降低C的扩散系数, 对实验数据拟合得到C的去陷阱激活能为165 kJ/mol. 所提出模型仅适用于未发生碳化物析出的低温渗碳, 且并未考虑扩散应力的影响.

关键词 奥氏体不锈钢表面强化低温表面渗碳C扩散陷阱-去陷阱模型    
Abstract

Low-temperature surface carburization has proven to be one of the most effective techniques for improving the mechanical properties of 316-type austenitic stainless steel (Fe-Cr-Ni alloy), including surface hardness, fatigue resistance and wear resistance. It is well known that carbon diffusion in austenitic stainless steel is a very complicated process and still not fully understood. So it is of great importance to figure out the carbon diffusion mechanism in steel and establish a model that can predict the carbon concentration along the depth direction in any given carburization conditions. Studies in recent years reveal that trapping effect should be considered in carbon diffusion in austenitic steels at low temperature. In this work, low-temperature surface carburization treatment was carried out with 316L austenitic stainless steel, and the carbon concentration along the depth direction was measured. A kinetic model based on the "trapping-detrapping" mass transport mechanism for simulating the carbon fraction-depth profile was developed. This model considered that the diffusion of carbon under the influence of trap sites formed by local chromium atoms. Then the calculated carbon concentration was compared to the experimental results in order to check the validity of the model. The results show as follow: (1) in low-temperature-carburized 316L austenitic stainless steel, the carbon fraction-depth profile exhibits plateau-type shape which is not consistent with the standard analytic solution of the diffusion equation (Fick's law of diffusion); (2) carbon fraction-depth profile based on "trapping-detrapping" model is in good agreement with experimental carbon fraction-depth profile, which indicates the trapping effect plays an important role in carbon diffusion; (3) carbon diffusivity decreases by the trapping effect of Cr atoms, and the detrapping energy of carbon deduced from fitting experimental data is 165 kJ/mol; (4) the proposed model can only be used to describe the carbon diffusion in austenitic stainless steel during low-temperature surface carburization without chromium carbide precipitation. In addition, the influence of stresses induced by incorporating the carbon into austenite lattice on the carbon transport mechanism is not included in the trapping-detrapping model.

Key wordsaustenitic stainless steel    surface strenthening    low-temperature surface carburization    carbon diffusion    trapping-detrapping model
    
基金资助:* 国家自然科学基金项目51475224 和江苏省高校自然科学研究项目14KJA470002 资助

引用本文:

彭亚伟,巩建鸣,荣冬松,姜勇,付明辉,余果. 316L奥氏体不锈钢低温表面渗碳的数值分析*[J]. 金属学报, 2015, 51(12): 1500-1506.
Yawei PENG, Jianming GONG, Dongsong RONG, Yong JIANG, Minghui FU, Guo YU. NUMERICAL ANALYSIS OF LOW-TEMPERATURE SURFACE CARBURIZATION FOR 316L AUSTENITIC STAINLESS STEEL. Acta Metall Sin, 2015, 51(12): 1500-1506.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00251      或      https://www.ams.org.cn/CN/Y2015/V51/I12/1500

图1  316L奥氏体不锈钢未渗碳前与在470 ℃渗碳不同时间后渗碳层的显微组织
图2  316L奥氏体不锈钢未渗碳前与在470 ℃渗碳不同时间后的XRD谱
图3  实验测得的C浓度沿316L不锈钢渗碳层深度方向的分布
图4  316L奥氏体不锈钢在470 ℃下经不同渗碳时间处理后C浓度沿渗层深度方向分布的实验值和计算值
图5  316L奥氏体不锈钢在470 ℃经20 h渗碳处理后C浓度沿渗层深度方向分布的实验和计算结果
图6  渗碳20 h后316L奥氏体不锈钢中实验测得的C浓度和取不同去陷阱激活能时计算得到的C浓度沿深度方向的分布
[1] Heuer A H, Qu J, O'Donnell L. Encyclopedia of Tribology. New York: Springer US, 2013: 2017
[2] Lo R H, Shek C H, Lai J K L. Mater Sci Eng, 2009; R65: 39
[3] Leyland A, Lewis D B, Stevenson P R, Matthews A. Surf Coat Technol, 1993; 62: 608
[4] Lewis D B, Leyland A, Stevenson P R, Matthews A. Surf Coat Technol, 1993; 60: 416
[5] Karabelchtchikova O, Sisson R D. J Phase Equilib Diff, 2006; 27: 598
[6] Gu X T, Michal G M, Ernst F, Kahn H, Heuer A H. Metall Mater Trans, 2014; 45A: 3790
[7] Wang Y F, Gong J M, Rong D S, Gao F. Acta Metall Sin, 2014; 50: 409
[7] (王艳飞, 巩建鸣, 荣冬松, 高 峰. 金属学报, 2014; 50: 409)
[8] Agarwal N, Kahn H, Avishai A, Michal G, Ernst F, Heuer A H. Acta Mater, 2007; 55: 5572
[9] Michal G M, Ernst F, Kahn H, Cao Y, Oba F, Agarwal N, Heuer A H. Acta Mater, 2006; 54: 1597
[10] Christiansen T, Somers M A J. Mater Sci Eng, 2006; A424: 181
[11] M?ller W, Parascandola S, Telbizoiva T, Gunzel G, Richter E. Surf Coat Technol, 2001; 73: 136
[12] Zhang Z P, Li P. Vacuum, 2014; 101: 321
[13] Parascandola S, M?ller W, Williamson D L. Appl Phys Lett, 2000; 76: 2194
[14] Rong D S, Gong J M, Jiang Y, Geng L Y. Chin Pat, 103323355 A, 2013
[14] (荣冬松, 巩建鸣, 姜 勇, 耿鲁阳. 中国专利, 103323355 A, 2013)
[15] Jackson W B, Tsai C C. Phys Rev, 1992; 45B: 12
[16] Abrasonis G, Rivie?re J P, Templier C, Pranevic?ius L, Barradas N P. J App Phys, 2005; 97: 124906
[17] Sun Y, Chin L Y. Surf Eng, 2002; 18: 443
[18] Liu W J, Brimacombe J K, Hawbolt E B. Acta Metall Mater, 1991; 39: 2373
[19] Agarwala R P, Naik M C, Anand M S, Paul A R. J Nucl Mater, 1970; 36: 41
[20] Farkas D, Delgado J. Scr Metall, 1983; 17: 261
[21] Ernst F, Li D Q, Kahn H, Harold, Michal G M. Heuer A H. Acta Mater, 2011; 59: 2268
[22] Agren J. Scr Metall, 1986; 20: 1507
[23] Sharghi-Moshtaghin R, Kahn H, Ge Y, Gu X, Martin F J, Natishan P M, Rayne R J, Michal G M, Ernst F, Heuer A H. Metall Mater Trans, 2010; 41A: 2022
[24] Grabke H J. Mater Corros, 2003; 5: 736
[25] Raic K T. Scand J Metall, 1993; 22: 50
[26] Munts V A, Baskakov A P. Met Sci Heat Treat, 1983; 25: 98
[27] Ernst F, Avishai F, Kahn H, Gu X, Michal G M, Heuer A H. Metall Mater Trans, 2009; 40A: 1768
[28] Ernst F, Cao Y, Michal G M, Heuer A H. Acta Mater, 2007; 55: 1895
[1] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[2] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[3] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[4] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[5] 秦凤明, 李亚杰, 赵晓东, 何文武, 陈慧琴. 含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响[J]. 金属学报, 2018, 54(1): 55-64.
[6] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[7] 陈思含,梁田,张龙,马颖澈,刘政军,刘奎. 6%Si高硅奥氏体不锈钢固溶处理过程中bcc相的演变机制研究[J]. 金属学报, 2017, 53(4): 397-405.
[8] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[9] 史金涛,侯陇刚,左锦荣,卢林,崔华,张济山. 304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征*[J]. 金属学报, 2016, 52(8): 945-955.
[10] 姜勇, 张佐, 巩建鸣. Cr5Mo/A302异质焊接接头C扩散及其对高温蠕变寿命的影响[J]. 金属学报, 2015, 51(4): 393-399.
[11] 杨辉, 夏爽, 张子龙, 赵清, 刘廷光, 周邦新, 白琴. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响[J]. 金属学报, 2015, 51(3): 333-340.
[12] 荣冬松,姜勇,巩建鸣. 奥氏体不锈钢低温超饱和渗碳实验及热动力学模拟研究*[J]. 金属学报, 2015, 51(12): 1516-1522.
[13] 李嘉宁, 巩水利, 王娟, 单飞虎, 李怀学, 吴冰. Cu对TA15-2钛合金表面Stellite 12基激光合金化涂层组织结构及耐磨性的影响*[J]. 金属学报, 2014, 50(5): 547-554.
[14] 王艳飞, 巩建鸣, 荣冬松, 高峰. 不锈钢低温气体渗碳的C浓度与扩散应力测量与计算*[J]. 金属学报, 2014, 50(4): 409-414.
[15] 陈燕, 伍翠兰, 谢盼, 陈汪林, 肖辉, 陈江华. 机械磨擦制备的Fe-20Mn-3Al-3Si钢表面相变强化层*[J]. 金属学报, 2014, 50(4): 423-430.