Please wait a minute...
金属学报  2014, Vol. 50 Issue (10): 1195-1202    DOI: 10.11900/0412.1961.2014.00101
  本期目录 | 过刊浏览 |
P92钢时效的Laves相演化行为
王学1,2(), 于淑敏1, 任遥遥1, 刘洪3, 刘洪伟3, 胡磊1,2
1 武汉大学动力与机械学院, 武汉 430072
2 武汉大学流体机械与动力工程装备技术湖北省重点实验室, 武汉 430072
3 东方电气集团东方锅炉股份有限公司, 自贡 643001
LAVES PHASE EVOLUTION IN P92 STEEL DURING AGEING
WANG Xue1,2(), YU Shumin1, REN Yaoyao1, LIU Hong3, LIU Hongwei3, HU Lei1,2
1 School of Power and Mechanics, Wuhan University, Wuhan 430072
2 Key Laboratory of Accoutrement Technique in Fluid Machinery & Power Engineering of Hubei Province, Wuhan University, Wuhan 430072
3 Dongfang Boiler Group Co. Ltd., Zigong 643001
引用本文:

王学, 于淑敏, 任遥遥, 刘洪, 刘洪伟, 胡磊. P92钢时效的Laves相演化行为[J]. 金属学报, 2014, 50(10): 1195-1202.
Xue WANG, Shumin YU, Yaoyao REN, Hong LIU, Hongwei LIU, Lei HU. LAVES PHASE EVOLUTION IN P92 STEEL DURING AGEING[J]. Acta Metall Sin, 2014, 50(10): 1195-1202.

全文: PDF(7671 KB)   HTML
摘要: 

对P92钢进行650 ℃, 0~8000 h时效实验, 采用SEM-BSE和定量金相技术对Laves相的体积分数、平均直径和数量密度进行定量, 研究了Laves相的析出和粗化动力学特性, 评估了Laves相演化对蠕变强度的影响. 结果表明, Laves相在时效0~2000 h内析出, 优先在晶界析出长大, 最终析出时的体积分数约为0.95%. Laves相粒子在时效3000 h后明显聚集粗化, 粗化速率明显快于M23C6碳化物的原因是由于晶界扩散机制的作用. Laves相在1000~3000 h内具有最佳的析出强化效果, 超过3000 h后由于显著粗化使沉淀强化作用明显下降. 由于体积分数小和热稳定性差, Laves相的强化作用远小于M23C6型碳化物.

关键词 P92钢Laves相析出粗化蠕变强度    
Abstract

ASME P92 (9Cr-0.5Mo-1.8WVNb) is a key material for the main steam pipe and header with larger diameter and thick wall in ultra-supercritical (USC) plant, because of its low thermal expansion coefficient, good corrosion resistance, good fabricability and especially its high creep rupture strength. The Laves phase (Fe2M) precipitates in service and plays complicated and controversial role in affecting and/or determining the creep strength of the P92 steel. The fine Laves phase particles may contribute to precipitation strengthening and decrease the creep rate in the primary and transient creep region, however, the subsequent coarsening of Laves phase reduces the precipitation strengthening. Thus, in order to provide a systematic and definite understanding of the creep properties, it is necessary to investigate the precipitation and coarsening behavior of the Laves phase in P92 steel. In this work, the Laves phase parameters of P92 steel, including volume fraction, mean diameter and number density, were measured using SEM-BSE and quantitative metallography methods during aging at 650 ℃ for 0~8000 h. The precipitate and coarsening kinetics were investigated based on the quantification of Laves phase in P92 steel. Furthermore, the martensitic lath stability during aging was observed by OM and TEM. Lastly, the influence of Laves phase evolution on the creep rupture strength was estimated from the change of Orowan stress during aging. The results indicate that SEM-BSE is a suitable method for measurement of Laves phase precipitates, and can achieve significantly statistical data when characterizing large particles comparing with the EFTEM, so that evaluate the kinetics of precipitation and coarsening of Laves phase. The Laves phase precipitates at grain boundaries preferentially during the 0~2000 h of aging and its final volume fraction is around 0.95%. Obvious coarsening of Laves phase is observed after aging for 3000 h and its rate is much greater than that of M23C6 carbides. Grain boundary diffusion may play significant role in much rapider coarsening of Laves phases than that of M23C6 carbides. The Laves phase has the most precipitate hardening in the P92 steel aged up to 1000~3000 h and this hardening would drop remarkably due to its fast coarsening after aging for 3000 h. The contribution of Laves phase particles to creep strength is much less than that of M23C6 carbides. The P92 steel has a sub-microstructure with clear lath and high density dislocations after aging at 650 ℃ for 8000 h due to the stable M23C6 carbides on sub-boundaries.

Key wordsP92 steel    Laves phase    precipitate    coarsening    creep rupture strength
收稿日期: 2014-03-05     
ZTFLH:  TG142.7  
基金资助:*国家自然科学基金项目51074113和51374153及四川省应用基础研究计划项目2013JY0123资助
作者简介: null

王学, 男, 1971年生, 教授

图1  P92钢显微结构的OM像
图2  P92钢显微结构的TEM像
图3  P92钢时效前后的BSE像
图4  P92钢在650 ℃时效不同时间的Laves相定量结果
图5  P92钢650 ℃时效前后萃取沉淀物的XRD谱
图6  基于Laves相定量结果的评估时间指数n
图7  基于Laves相定量结果估计的粗化率Kp
图8  P92钢中Laves相和M23C6的Orowan应力随时效时间的变化
[1] Jorgen B, Sven K, Rudolph B. Energy, 2006; 31: 1437
[2] Richardot D, Vaillant J C, Arbab A, Bendick W. The T/P92 Book. 2nd Ed., Boulogne: Vallourec & Mabbesmann Tubes, 2002: 1
[3] Shen Q, Liu H G. Electr Power Constrc, 2010; 31(10): 71
[3] (沈 琦, 刘鸿国. 电力建设, 2010; 31(10): 71)
[4] Masuyama F. ISIJ Int, 2001; 41: 612
[5] Abe F. Mater Sci Eng, 2001; A319-321: 770
[6] Tsuchida Y, Okamoto K, Tokunaga Y. ISIJ Int, 1995; 35: 317
[7] Maruyama K, Sawada K, Koike J. ISIJ Int, 2001; 41: 641
[8] Abe F. Metall Mater Trans, 2005; 36A: 321
[9] Peng Z F, Cai L S, Peng F F, Hu Y P, Chen F Y. Acta Metall Sin, 2010; 46: 429
[9] (彭志方, 蔡黎胜, 彭芳芳, 胡永平, 陈方玉. 金属学报, 2010; 46: 429)
[10] Lee J S, Armaki H G, Maruyama K, Muraki T, Asahi H. Mater Sci Eng, 2006; A428: 270
[11] Wang X, Pan Q G, Tao Y S, Zhang Y L, Zeng H Q, Liu H. Acta Metall Sin, 2012; 48: 427
[11] (王学, 潘乾刚, 陶永顺, 章应霖, 曾会强, 刘 洪. 金属学报, 2012; 48: 427)
[12] Chen Y X, Yan W, Hu P, Shan Y Y, Yang K. Acta Metall Sin, 2011; 47: 1372
[12] (陈云翔, 严 伟, 胡 平, 单以银, 杨 柯. 金属学报, 2011; 47: 1372)
[13] Hofer P, Cerjak H, Warbichler P. Mater Sci Technol, 2000; 16: 1221
[14] Dimmler G, Weinert P, Kozeschnik E, Cerjak H. Mater Charact, 2003; 51: 341
[15] Hald J. J Pressure Vessels Piping, 2008; 85: 30
[16] Qing G Y. Quantity Metallography. Chendu: Sichuan Science and Technology Press, 1987: 1
[16] (秦国友. 定量金相. 成都: 四川科学技术出版社, 1987: 1)
[17] Fujita N, Ohmura K, Yamamoto A. Mater Sci Eng, 2003; A351: 272
[18] Yong Q L. Secondary Phase in Steels. Beijing: Metallurgical Industry Press, 2006: 303
[18] (雍歧龙.钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 303)
[19] Qi Z F. Diffusion and Phase Transformation in Solid Metals. Beijing: China Machine Press, 1998: 196
[19] (戚正风. 固态金属中的扩散与相变. 北京: 机械工业出版社, 1998: 196)
[20] Ågren J, Clavaguera-Mora M T, Golcheski J, Inden G, Kumar H, Sigli C. Calphad, 2000; 24: 41
[21] Abe F. Mater Sci Eng, 2004; A387-389: 565
[22] Hald J, Korcakova L. ISIJ Int, 2003; 43: 420
[23] Gustafson Å, Hättestrand M. Mater Sci Eng, 2002; A333: 279
[24] Zhang J S.High Temperature Deformation and Fracture of Materials. Beijing: Science Press, 2007: 232
[24] (张俊善. 材料的高温变形与断裂.北京: 科学出版社, 2007: 232)
[25] Dejun L, Shinozaki K. Sci Technol Weld Joining, 2005; 10: 544
[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[3] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[4] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[5] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[6] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[7] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[8] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[9] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[10] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[11] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[12] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[13] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[14] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[15] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.