Please wait a minute...
金属学报  2009, Vol. 45 Issue (10): 1159-1165    
  论文 本期目录 | 过刊浏览 |
大应变量冷轧金属Ni再结晶过程中Σ3晶界演化
张玉彬1; A. Godfrey1;刘伟1;刘庆2
1.清华大学材料科学与工程系; 北京 100084
2.重庆大学材料科学与工程学院; 重庆 400044
EVOLUTION OF Σ3 BOUNDARIES DURING RECRYSTALLIZATION OF COLD–ROLLED NICKEL DEFORMED TO HIGH STRAIN
ZHANG Yubin1;  A. Godfrey1;  LIU Wei1; LIU Qing2
1.Department of Materials Science and Engineering; Tsinghua University; Beijing 100084
2.School of Materials Science and Engineering; Chongqing University; Chongqing 400044
引用本文:

张玉彬 A. Godfrey 刘伟 刘庆. 大应变量冷轧金属Ni再结晶过程中Σ3晶界演化[J]. 金属学报, 2009, 45(10): 1159-1165.
, , , . EVOLUTION OF Σ3 BOUNDARIES DURING RECRYSTALLIZATION OF COLD–ROLLED NICKEL DEFORMED TO HIGH STRAIN[J]. Acta Metall Sin, 2009, 45(10): 1159-1165.

全文: PDF(3519 KB)  
摘要: 

应用电子背散射衍射技术 (EBSD) 和电子通道衍衬成像技术(ECC)研究了大应变量 (96%) 冷轧纯度为99.996\%的金属Ni在低温再结晶过程中Σ3晶界的
演化. 研究表明, 基于EBSD数据, Σ3晶界可以分为两类------孪晶型和非孪晶型Σ3晶界, 二者可通过晶界取向差与60°<111>的偏差Δθ来区分. EBSD定位观察再结晶过程的结果表明, 非共格孪晶是由共格孪晶发展而来; 绝大部分Σ3n (n>1)晶界由晶核与其n次孪晶相遇而形成, 并且晶界含量随着n的增加显著降低. 大部分非孪晶型Σ3晶界由孪晶型Σ3晶界与小角晶界(Σ1)相遇反应而来, 可能比孪晶型Σ3晶界更能够阻断大角晶界网络.

关键词 Ni 电子背散射衍射 再结晶 Σ3晶界 晶界工程    
Abstract

The concept of grain boundary engineering (GBE) has been proposed based on the fact that many studies have demonstrated that boundaries associated with low value coincident site lattice (CSL) misorientations show higher resistance to intergranular fracture and corrosion, reduced susceptibility to impurity segregation and superior ductility. It is commonly accepted that for fcc metals of low to medium stacking fault energy metals, including Ni and many Ni–alloys, the most important CSL boundary for the GBE process is a Σ3 boundary, the occurrence of which is dominated by the formation of annealing twins. Moreover, it has been found that repetitive thermo–mechanical processing can be used to increase further the fraction of Σ3 (and Σ3n (n >1)) boundaries. However, the mechanism for this is not yet clear. Therefore, an investigation on the evolution of Σ3 boundaries during recrystallization is important for understanding the mechanisms of GBE for those materials. In the present paper the evolution of Σ3 boundaries during recrystallization in a 96% cold–rolled sample of pure nickel f 99.996% purity has been explored using orientation maps obtained using electrn backscatter diffraction (EBSD). Each orientation map was taken from the same area after annealing for various times. Based on the EBSD data the Σ3 boundaries can be divided into two groups: "twin" type and "non–twin" type. These groups can be differentiated using a parameter of deviation angle (Δθ) of boundary misorientation to the ideal twin misorientation (60°<111>). During recrystallization incoherent twin boundaries are found to develop from coherent twin boundaries. It is found also that most Σ3n (n >1) boundaries are formed by impingement of a nucles with its n–order twins, and that the chance for such impingement events decreases significantly with increasing n. Most non–twin type Σ3 boundaries arise from impingement of Σ1 and twin type Σ3 boundares. Non–twin type Σ3 boundaries may be more effective than twin type Σ3 boundaries to develop a beneficial grain boundary network.

Key wordsNi    electron backscattered diffraction (EBSD)    recrystallization     Σ3 boundary    grain boundary engineering (GBE)
收稿日期: 2009-04-02     
ZTFLH: 

TG111

 
基金资助:

国家自然科学基金资助项目50671052和50620130096

作者简介: 张玉彬, 男, 1982年生, 博士生
[1] Watababe T. Res Mech, 1984; 11: 47 [2] Palumbo G, King P J, Aust K T, Erb U, Lichtenberger P C. Scr Metall Mater, 1991; 25: 1775 [3] Lin P, Palumbo G, Erb U, Aust K T. Scr Metall Mater, 1995; 33: 1387 [4] Lehockey E M, Palumbo G. Mater Sci Eng, 1997; A237: 168 [5] Randle V. The Role of the Coincidence Site Lattice in Grain Boundary Engineering. Cambridge: Cambridge University Press, 1996: 2 [6] Kumar M, King W E, Schwartz A J. Acta Mater, 2000; 48: 2081 [7] Davies H, Randle V. Philos Mag, 2001; A33: 1853 [8] Lehockey E M, Palumbo G, Aust K T, Erb U, Lin P. Scr Mater, 1998; 39: 341 [9] Qian M, Lippold J C. Acta Mater, 2003; 51: 3351 [10] Wang W G, Zhou B X, Feng L, Zhang X, Xia S. Acta Metall Sin, 2006; 42: 715 (王卫国, 周邦新, 冯柳, 张欣, 夏爽. 金属学报, 2006; 42: 715) [11] Lehockey E M, Palumbo G, Lin P, Brennenstuhl A M. Metall Mater Trans, 1998; 29A: 387 [12] Shimada M, Kokawa H, Wang Z J, Sato Y S, Karibe I. Acta Mater, 2002; 50: 2331 [13] Thaveeprungsriporn V, Sinsrok P, Thong–Aram D. Scr Mater, 2001; 44: 67 [14] Thaveeprungsriporn V, Was G S. Metall Mater Trans, 1997; 28A: 2101 [15] King W E, Schwartz A J. Scr Mater, 1998; 38: 449 [16] Palumbo G. Int Pat Appli PCT\CA93\00556, 1994 [17] Randle V. Acta Mater, 1999; 47: 4187 [18] Randle V. Acta Mater, 2004; 52: 4067 [19] Mishin O V. J Mater Sci, 1998; 33: 5137 [20] Mishin O V, Gottstein G. Mater Sci Eng, 1998; A249: 71 [21] Brandon D G. Acta Metall, 1966; 14: 1479 [22] Godfrey A, Mishin O V, Liu Q. Mater Sci Tech, 2006; 22: 1 [23] Mishin O V, Godfrey A, Juul Jensen D. In: Schwarta A J, Kumar M, Adams B L eds., Electron Backscatter Diffraction in Materials Science–2, Springer–Verlag, London, 2009: 19 [24] Zhang Y B, Godfrey A, Liu Q, Liu W. Mater Sci Tech, 2009; 25 (in Press) [25] Zhang Y B, Godfrey A, Liu Q, Liu W, Juul J D. Acta Mater, 2009; 57: 2631 [26] Humphreys F J, Hatherley M. Recrystallization and Related Annealing Phenomena. Elsevier Science, Oxford, 2004: 251
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[5] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[6] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[7] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[8] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[9] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[11] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[12] 胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.
[13] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[14] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[15] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.