Please wait a minute...
金属学报  2009, Vol. 45 Issue (10): 1153-1158    
  论文 本期目录 | 过刊浏览 |
应用两相流模型模拟压铸充型过程的卷气现象
李帅君1;熊守美1;Mei Li2; John Allison2
1. 清华大学机械工程系先进成形制造教育部重点实验室; 北京 100084
2.Research & Advanced Engineering Department; Scientific Research Laboratory; Ford Motor Company; Dearborn MI 48121; USA  
A TWO-PHASE FLOW MODEL FOR SIMULATING AIR ENTRAPMENT DURING MOLD FILLING OF HIGH PRESSURE DIE CASTING PROCESS
LI Shuaijun1; XIONG Shoumei1; Mei Li2; John Allison2
1.Key Laboratory for Advanced Materials Processing Technology; Ministry of Education; Department of Mechanical Engineering; Tsinghua University; Beijing 100084
2. Research & Advanced Engineering Department; Scientific Research Laboratory; Ford Motor Company; Dearborn MI 48121; USA
引用本文:

李帅君 熊守美 Mei Li John Allison. 应用两相流模型模拟压铸充型过程的卷气现象[J]. 金属学报, 2009, 45(10): 1153-1158.

全文: PDF(3314 KB)  
摘要: 

通过对压铸充型过程中卷气缺陷形成机理的分析, 认为型腔中空气的流动以及与金属液之间的相互作用是形成卷气现象的主要原因. 为了考虑型腔中空气的流动, 采用了一种不可压缩两相流数学模型来模拟压铸充型过程的卷气现象. 通过计算流体力学中的两个基准算例, 较为全面地验证了该模型的准确性和可靠性. 在此基础上, 设计了专门针对压铸充型过程的高速水模拟实验, 通过对可视化实验结果与两相流模拟结果的比较, 证实二者吻合较好, 说明了该模型能够较好地模拟液体的充填行为和卷入其中的气泡.

关键词 压铸 卷气 两相流模拟    
Abstract

The most common defect found in high pressure die casting (HPDC) process is the gas porosity which significantly affects the mechanical roperties of the final components. The generation of gas porosity is known mainly due to the air entrapment in the liquid metal during the mold filling stage. Knowing the trapped–air location and amount could allow for a more accurate and objective analysis of casting quality. In the past few decades, extensive efforts have been made to develop simulation codes of casting flow. Most of these codes solve the velocity, pressure and fluid fraction only in the liqid phase wih he assumption that the effect of air in the die cavity is negligible. As a matter of fact, the air in the die cavity has significant influence on the filling pattern of the molten metal and the gas porosity distribution of the die casts. Recently, following the development of computational fluid dynamics (CFD), two–phase flow models have drawn continuous attention in the numerical simulation of casting processes, but there are still few models and further studies are needed. In this study, the mechanism of the formation of air entrapment defects in the HPDC process was discussed and it turned out that the air flow in the die cavity as well as the interaction between air and liquid metal resulted in the final air entrapment. In order to consider the air flow in the die cavity, an incompressible two–phase flow model was presented to simulate the air bubbles entrapped by the free surface of liquid metal durig the mold filling stage. Two numerical benchmark tests of fluid dynamics were performed to verify thvalidity and stability of the model. Furthermore, a high speed water analog exeriment similar to real die casting process was designed and carried out to compare the exerimental results with the simulation ones. Good agreements obtained demonstrate that the two–phase flow model has acceptable rediction accuracy in modeling the filling behavior of liquid and tracking the entrapped air bubbles.

Key wordsdie cstin    air ntrament    two–phase flow modeling
收稿日期: 2009-04-07     
ZTFLH: 

TG21

 
基金资助:

国家重点基础研究发展计划项目2005CB724105和美国Ford汽车公司资助

作者简介: 李帅君, 男, 1981年生, 博士生

[1] Vinarcik E J. Adv Mater Process, 2001; 159: 49
[2] Kim C W, Siersma K, Kubo K. In: Wang Q ed., 135th TMS Annua Meeting, Opio: Minerals, Metals and Materials Society, 2006: 153
[3] Huang W S, Stoehr R A. J Met, 1983; 35(10): 22
[4] Lin H J. AFS Trans, 1988; 96: 447
[5] Li Y B, Wei Z. Mater Tech, 2003; 18(1): 36
[6] Kuo J H, Hwang W S. Model Simul Mater Sci Eng, 2000; 8: 583
[7] Hong J H, Choi Y S, Hwang H Y, Choi J K. In: Bellet M ed., Modeling of Casting, Welding and Advanced Solidification Processes—XI, Opio: Minerals, Metals and Materials Society, 2006: 611
[8] Kimatsuka A, Ohnaka I, Zhu J D, Sugiyama A, Kuroki Y. In: Bellet M ed., Modeling of Casting, Welding and Advanced Solidification Processes—XI, Opio: Minerals, Metals and Materials Society, 2006: 603
[9] Tavakoli R, Babaei R, Varahram N, Davami P. Comput Methods Appl Mech Eng, 2006; 196: 697
[10] Hao J, Chen L L, Zhou J X. In: Materials Science Forum ed., 5th International Conference on Physical and Numerical Simulation of Materials Processing, Zhengzhou: Trans Tech Publications Ltd, 2007: 43
[11] Hirt C W, Nichols B D. J Comput Phys, 1981; 39: 201
[12] TaoWQ. Numerical Heat Transfer. 2nd Ed., Xi’an: Xi’an Jiaotong University Press, 2001: 232
(陶文铨. 数值传热学. 第2版, 西安: 西安交通大学出版社, 2001: 232)
[13] Chorin A J. Math Comput, 1968; 22: 745
[14] Kim J, Moin P. J Comput Phys, 1985; 59: 308
[15] Martin J C, MoyceWJ. Philos Trans R Soc London, 1952;244A: 312

[1] 孙宝德, 王俊, 康茂东, 汪东红, 董安平, 王飞, 高海燕, 王国祥, 杜大帆. 高温合金超限构件精密铸造技术及发展趋势[J]. 金属学报, 2022, 58(4): 412-427.
[2] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[3] 祁明凡, 康永林, 周冰, 朱国明, 张欢欢. 强制对流搅拌流变压铸AZ91D镁合金的组织与性能*[J]. 金属学报, 2015, 51(6): 668-676.
[4] 曹永友, 熊守美, 郭志鹏. 压铸压室内部界面传热反算模型的建立和应用*[J]. 金属学报, 2015, 51(6): 745-752.
[5] 王志胜, 陈祥, 李言祥, 张华伟, 刘源. B对铜合金压铸热作模具钢高温力学及热疲劳性能的影响*[J]. 金属学报, 2015, 51(5): 519-526.
[6] 万谦,赵海东,邹纯. 铝合金压铸件微观孔洞三维特征及分布的研究[J]. 金属学报, 2013, 49(3): 284-290.
[7] 王向杰 游国强 张均成 龙思远. 压铸AZ91D镁合金母材气孔在重熔过程的遗传性研究[J]. 金属学报, 2012, 48(12): 1437-1445.
[8] 吴孟武 熊守美. 考虑压室预结晶的镁合金压铸组织实验及模拟研究[J]. 金属学报, 2011, 47(5): 528-534.
[9] 韩志强 李金玺 杨文 赵海东 柳百成. 铝合金挤压铸造过程微观孔洞形成的建模与仿真[J]. 金属学报, 2011, 47(1): 7-16.
[10] 李帅君 熊守美 Mei Li John Allison. 压铸充型过程中卷气现象的数值模拟研究[J]. 金属学报, 2010, 46(5): 554-560.
[11] 吴孟武 熊守美. 基于改进CA方法的压铸镁合金微观组织模拟[J]. 金属学报, 2010, 46(12): 1534-1542.
[12] 单际国 张婧 郑世卿 陈武柱 任家烈. 压铸镁合金激光焊气孔形成原因的实验研究[J]. 金属学报, 2009, 45(8): 1006-1012.
[13] 韩志强 朱维 柳百成. 挤压铸造凝固过程热--力耦合模拟 I.数学模型及求解方法[J]. 金属学报, 2009, 45(3): 356-362.
[14] 朱维 韩志强 柳百成. 挤压铸造凝固过程热--力耦合模拟 II. 模拟计算及实验验证[J]. 金属学报, 2009, 45(3): 363-368.
[15] 郭志鹏 熊守美 Mei Li John Allison. 压铸过程中铸件-铸型界面换热系数与铸件凝固速率的关系[J]. 金属学报, 2009, 45(1): 102-106.