Please wait a minute...
金属学报  2017, Vol. 53 Issue (4): 415-422    DOI: 10.11900/0412.1961.2016.00424
  本期目录 | 过刊浏览 |
中国科学院金属研究所 沈阳 110016
Microstructure and Mechanical Properties of TC16 Titanium Alloy by Room Temperature Roller Die Drawing
Zhiqiang ZHANG,Limin DONG(),Shaoxuan GUAN,Rui YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(5376 KB)   HTML  

利用XRD、SEM和TEM等手段分析了TC16钛合金辊模拉丝变形过程中的相组成和显微组织的变化情况,并对不同应变的辊模拉丝变形丝材进行了室温拉伸性能与显微硬度测试。结果表明,在辊模拉丝变形过程中,TC16钛合金丝材主要由α相和β相组成,部分β相发生应力诱发α''马氏体相变;随着辊模拉丝真应变的增加,TC16钛合金丝材的显微组织明显细化,当真应变达到2.14时,横截面和纵截面中的α相和β相纤维状组织厚度均约为0.3 μm,两相衍射斑点已经近似环状,表明两相显微组织也明显细化;随着辊模拉丝真应变的增加,TC16钛合金丝材的抗拉强度和显微硬度大幅提高,当真应变达到2.14时,TC16钛合金丝材的显微硬度由初始的266 HV提高到365 HV。

关键词 TC16钛合金辊模拉丝显微组织力学性能晶粒细化    

Grain refinement is a challenging topic to improve mechanical properties of metallic materials, especially for titanium alloys which show great potential in aerospace and medical implants areas due to the low density and good corrosion resistance. However, severe plastic deformation (SPD) technologies which have been commonly used in laboratory in smaller scale are difficult to be realized in industrial. Considerable researches are therefore paying attention to the development of new technologies for improvement of grain refinement at relatively lower strains. In this work, the dual phase TC16 titanium alloy showing excellent room temperature ductility was investigated with emphasis on the feasibility of producing ultrafine grains by roller die drawing at room temperature. The techniques of XRD, SEM, TEM, Vickers hardness test and tensile test were employed to analyze the phase constitutes, microstructure evolutions and preliminary mechanical properties of the alloy deformed at different conditions. Results reveal that TC16 titanium alloy mainly consists of α and β phases after roller die drawing at room temperature, and a small quantity of stress-induced α" martensite can be additionally identified inside β grains. The grain sizes of α phase and β phase decrease with strain increasing, which result to enhanced tensile strength and Vickers hardness. Indeed, the fibrous morphology of both α phase and β phase with 0.3 μm in thickness and a high value of 365 HV in Vickers hardness were revealed at the applied true strain of 2.14. Ultra-fine grains evidenced by a near-ring SAED spots were therefore achieved in the present case.

Key wordsTC16 titanium alloy    roller die drawing    microstructure    mechanical property    grain refinement
收稿日期: 2016-09-21      出版日期: 2016-12-23


张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
Zhiqiang ZHANG,Limin DONG,Shaoxuan GUAN,Rui YANG. Microstructure and Mechanical Properties of TC16 Titanium Alloy by Room Temperature Roller Die Drawing. Acta Metall, 2017, 53(4): 415-422.

链接本文:      或

图1  不同真应变的TC16钛合金丝材纵截面的XRD谱
图2  真应变为1.05的TC16钛合金丝材纵截面55°~58°衍射峰的XRD谱分峰结果
图3  不同真应变的TC16钛合金丝材横截面和纵截面显微组织的SEM像
图4  不同真应变的TC16钛合金丝材横截面上α相尺寸和纵截面上α相长宽比的变化
图5  真应变2.14的TC16钛合金丝材横截面和纵截面的TEM像和选区电子衍射图
图6  真应变对TC16钛合金丝材室温拉伸性能的影响
图7  不同真应变的TC16钛合金丝材纵截面显微硬度
[1] Terada D, Inoue S, Tsuji N.Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process[J]. J. Mater. Sci., 2007, 42: 1673
doi: 10.1007/s10853-006-0909-7
[2] Gunderov D V, Polyakov A V, Semenova I P, et al.Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing[J]. Mater. Sci. Eng., 2013, A562: 128
doi: 10.1016/j.msea.2012.11.007
[3] Mishnaevsky L Jr, Levashov E, Valiev R Z, et al.Nanostructured titanium-based materials for medical implants: Modeling and development[J]. Mater. Sci. Eng., 2014, R81: 1
doi: 10.1016/j.mser.2014.04.002
[4] Sabirov I, Perez-Prado M T, Molina-Aldareguia J M, et al. Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route[J]. Scr. Mater., 2011, 64: 69
doi: 10.1016/j.scriptamat.2010.09.006
[5] Stolyarov V V, Zhu Y T, Lowe T C, et al.A two step SPD processing of ultrafine-grained titanium[J]. Nanostruct. Mater., 1999, 11: 947
doi: 10.1016/S0965-9773(99)00384-0
[6] Li Z M, Fu L M, Fu B, et al.Effects of annealing on microstructure and mechanical properties of nano-grained titanium produced by combination of asymmetric and symmetric rolling[J]. Mater. Sci. Eng., 2012, A558: 309
doi: 10.1016/j.msea.2012.08.005
[7] Yapici G G, Karaman I, Luo Z P.Mechanical twinning and texture evolution in severely deformed Ti-6Al-4V at high temperature[J]. Acta Mater., 2006, 54: 3755
doi: 10.1016/j.actamat.2006.04.007
[8] Saitova L R, H?ppel H W, G?ken M, et al.Fatigue behavior of ultrafine-grained Ti-6Al-4V ‘ELI’ alloy for medical applications[J]. Mater. Sci. Eng., 2009, A503: 145
[9] Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J]. Prog. Mater. Sci., 2000, 45: 103
doi: 10.1016/S0079-6425(99)00007-9
[10] Wang Y C, Longdon T G.Effect of heat treatment on microstructure and microhardness evolution in a Ti-6Al-4V alloy processed by high-pressure torsion[J]. J. Mater. Sci., 2013, 48: 4646
doi: 10.1007/s10853-012-7071-1
[11] Wang Y C, Longdon T G.Influence of phase volume fractions on the processing of a Ti-6Al-4V alloy by high-pressure torsion[J]. Mater. Sci. Eng., 2013, A559: 861
doi: 10.1016/j.msea.2012.09.034
[12] Ko Y G, Jung W S, Shin D H, et al.Effects of temperature and initial microstructure on the equal channel angular pressing of Ti-6Al-4V alloy[J]. Scr. Mater., 2003, 48: 197
doi: 10.4028/
[13] Yilmazer H, Niinomi M, Nakai M, et al.Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion[J]. Mater. Sci. Eng., 2013, C33: 2499
doi: 10.1016/j.msec.2013.01.056 pmid: 23623060
[14] Yilmazer H, Niinomi M, Cho K, et al.Microstructural evolution of precipitation-hardened β-type titanium alloy through high-pressure torsion[J]. Acta Mater., 2014, 80: 172
doi: 10.1016/j.actamat.2014.07.041
[15] Cojocaru V D, Raducanu D, Gordin D M, et al.Texture evolution during ARB (Accumulative Roll Bonding) processing of Ti-10Zr-5Nb-5Ta alloy[J]. J. Alloys Compd., 2013, 546: 260
doi: 10.1016/j.jallcom.2012.08.103
[16] Lin Z J, Wang L Q, Xue X B, et al.Microstructure evolution and mechanical properties of a Ti-35Nb-3Zr-2Ta biomedical alloy processed by equal channel angular pressing (ECAP)[J]. Mater. Sci. Eng., 2013, C33: 4551
doi: 10.1016/j.msec.2013.07.010 pmid: 24094159
[17] Kent D, Wang G, Yu Z T, et al.Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique[J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 405
doi: 10.1016/j.jmbbm.2010.11.013 pmid: 21316628
[18] Semiatin S L, Bieler T R.The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure[J]. Acta Mater., 2001, 49: 3565
doi: 10.1016/S1359-6454(01)00236-1
[19] Zherebtsov S, Murzinova M, Salishchev G, et al.Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing[J]. Acta Mater., 2011, 59: 4138
doi: 10.1016/j.actamat.2011.03.037
[20] Park C H, Kim J H, Yeom J T, et al.Formation of a submicrocrystalline structure in a two-phase titanium alloy without severe plastic deformation[J]. Scr. Mater., 2013, 68: 996
doi: 10.1016/j.scriptamat.2013.02.055
[21] Matsumoto H, Bin L, Lee S H, et al.Frequent occurrence of discontinuous dynamic recrystallization in Ti-6Al-4V alloy with α' martensite starting microstructure[J]. Metall. Mater. Trans., 2013, 44A: 3245
doi: 10.1007/s11661-013-1655-5
[22] Zhang Z Q, Dong L M, Yang Y, et al.Microstructure refinement of a dual phase titanium alloy by severe room temperature compression[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2604
doi: 10.1016/S1003-6326(11)61506-9
[23] Pilarczyk J W, Dyja H, Golis B, et al.Effect of roller die drawing on structure, texture and other properties of high carbon steel wires[J]. Met. Mater., 1998, 4: 727
doi: 10.1007/BF03026388
[24] Pilarczyk J W, van Houtte P, Aernoudt E. Effect of hydrodynamic and roller die drawing on the texture of high carbon steel wires[J]. Mater. Sci. Eng., 1995, A197: 97
doi: 10.1016/0921-5093(94)09756-9
[25] Asakawa M, Shigeta H, Shimizu A, et al.Experiments on and finite element analyses of the tilting of fine steel wire in roller die drawing[J]. ISIJ Int., 2013, 53: 1850
doi: 10.2355/isijinternational.53.1850
[26] Nam W J, Bae C M.Microstructural evolution and its relation to mechanical properties in a drawn dual-phase steel[J]. J. Mater. Sci., 1999, 34: 5661
doi: 10.1023/A:1004705705208
[27] Xu Y F, Yi D Q, Liu H Q, et al.Effects of cold deformation on microstructure, texture evolution and mechanical properties of Ti-Nb-Ta-Zr-Fe alloy for biomedical applications[J]. Mater. Sci. Eng., 2012, A547: 64
doi: 10.1016/j.msea.2012.03.081
[28] Zhang H Y, Zeng W D, Wang G, et al.On the deformation mechanisms and strain rate sensitivity of a metastable β Ti-Nb alloy[J]. Scr. Mater., 2015, 107: 34
doi: 10.1016/j.scriptamat.2015.05.014
[29] Moiseev V N.High-strength titanium alloy VT16 for manufacturing fasteners by the method of cold deformation[J]. Met. Sci. Heat Treat., 2001, 43: 73
doi: 10.1023/A:1010434625795
[30] Kim H Y, Ikehara Y, Kim J I, et al.Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys[J]. Acta Mater., 2006, 54: 2419
doi: 10.1016/j.actamat.2006.01.019
[31] Cahn R W, Haasen P.Physical Metallurgy[M]. 4th Ed., Amsterdam: Elsevier Science, 1996: 1529
[32] Ankem S, Margolin H, Greene C A, et al.Mechanical properties of alloys consisting of two ductile phases[J]. Prog. Mater. Sci., 2006, 51: 632
doi: 10.1016/j.pmatsci.2005.10.003
[33] Ankem S, Margolin H.The role of elastic interaction stresses on the onset of plastic flow for oriented two ductile phase structures[J]. Metall. Trans., 1980, 11A: 963
doi: 10.1007/BF02654710
[34] Greene C A, Ankem S.Modelling of elastic interaction stresses in two-phase materials by FEM[J]. Mater. Sci. Eng., 1995, A202: 103
doi: 10.1016/0921-5093(95)09786-4
[35] Wyatt Z, Ankem S.The effect of metastability on room temperature deformation behavior of β and α+β titanium alloys[J]. J. Mater. Sci., 2010, 45: 5022
doi: 10.1007/s10853-009-4178-0
[36] Langdon T G.Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement[J]. Acta Mater., 2013, 61: 7035
doi: 10.1016/j.actamat.2013.08.018
[1] 刘丰刚,林鑫,宋衎,宋梦华,韩一帆,黄卫东. 激光修复300M钢的组织及力学性能研究[J]. 金属学报, 2017, 53(3): 325-334.
[2] 康举,梁苏莹,吴爱萍,李权,王国庆. 2219铝合金搅拌摩擦焊中的局部液化现象及对接头力学性能的影响[J]. 金属学报, 2017, 53(3): 358-368.
[3] 王峰,董海阔,王志,毛萍莉,刘正. Mg-5Al-xCa合金的热裂行为[J]. 金属学报, 2017, 53(2): 211-219.
[4] 席明哲,周玮,尚俊英,吕超,吴贞号,高士友. 热处理对连续点式锻压激光快速成形GH4169合金组织与拉伸性能的影响[J]. 金属学报, 2017, 53(2): 239-247.
[5] 李宁,张蓉,张利民,邢辉,殷鹏飞,吴耀燕. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究[J]. 金属学报, 2017, 53(2): 192-200.
[6] 闫亚琼,罗晋如,张济山,庄林忠. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究[J]. 金属学报, 2017, 53(1): 107-113.
[7] 耿遥祥,特古斯,汪海斌,董闯,王宇鑫. Sn的加入对MnFe(P, Si)合金显微组织和磁性的影响[J]. 金属学报, 2017, 53(1): 77-82.
[8] 明洪亮,张志明,王俭秋,韩恩厚,苏明星. 国产核电安全端异种金属焊接件的微观结构及局部性能研究[J]. 金属学报, 2017, 53(1): 57-69.
[9] 杨忠波,赵文金,程竹青,邱军,张海,卓洪. Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53(1): 47-56.
[10] 黄文普,喻寒琛,殷杰,王泽敏,曾晓雁. 激光选区熔化成形K4202镍基铸造高温合金的组织和性能*[J]. 金属学报, 2016, 52(9): 1089-1095.
[11] 王峰,马德志,王志,毛萍莉,刘正. AM50-x(Zn, Y)镁合金的显微组织、力学性能与凝固行为*[J]. 金属学报, 2016, 52(9): 1115-1122.
[12] 左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.
[13] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
[14] 冯祥利,王磊,刘杨. Q460钢焊接接头组织及动态断裂行为的研究*[J]. 金属学报, 2016, 52(7): 787-796.
[15] 崔君军,陈礼清,李海智,佟伟平. 等温淬火低合金贝氏体球墨铸铁的回火组织与力学性能*[J]. 金属学报, 2016, 52(7): 778-786.