Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 555-560    DOI: 10.3724/SP.J.1037.2014.00006
  论文 本期目录 | 过刊浏览 |
铁单元素基合金表面激光高熵合金化涂层的制备*
张松, 吴臣亮, 王超, 伊俊振, 张春华
(沈阳工业大学材料科学与工程学院, 沈阳 110870)
SYNTHESIS OF LASER HIGH ENTROPY ALLOYING COATING ON THE SURFACE OF SINGLE-ELEMENT Fe BASE ALLOY
ZHANG Song, WU Chenliang, WANG Chao, YI Junzhen, ZHANG Chunhua
Institute of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
全文: PDF(5169 KB)   HTML
摘要: 

利用高功率半导体激光器进行合金化处理, 采用等摩尔比的Co, Cr, Al, Cu四主元合金粉末, 在Fe单元素基合金Q235钢表面成功制备出FeCoCrAlCu激光高熵合金化涂层. 利用SEM, XRD, EDS及显微硬度计对FeCoCrAlCu激光高熵合金化层的微观组织形貌、相结构、成分分布及性能进行系统研究. 结果表明: Q235基材主元素Fe在激光辐照时参与了表面合金化过程, 形成了FeCoCrAlCu五主元高熵合金涂层; 合金化层相组成为具有简单bcc结构的固溶体, 显微组织为典型的枝晶组织; 激光高熵合金化层仅在基体界面附近出现了少量s四方结构中间相, 从高熵合金化层表面到基材, 体系的混合熵呈高熵-中熵-低熵梯度变化; FeCoCrAlCu激光高熵合金化涂层的显微硬度高达8.3 GPa, 为基材Q253钢的3倍以上.

关键词 单元素基合金激光合金化FeCoCrAlCu高熵合金涂层    
Abstract:FeCoCrAlCu laser high entropy alloying coating has been synthetized by high power semiconductor laser alloying of equimolar ratio of Co, Cr, Al, Cu four elements mixture powder on the surface of single-element Fe base alloy Q235 steel. The microstructure, constituent phases, composition distribution and mechanical properties of FeCoCrAlCu laser high entropy alloying coating were investigated by SEM, XRD, EDS and microhardness tester. Experimental results show that the principal element of Fe in the single-element base alloy Q235 substrate participates surface alloying process during the laser irradiation, forming FeCoCrAlCu five principal high entropy alloy coating. The alloying coating is composed of simple bcc solid solution and the microstructure is mainly composed of typical dendritic structure. Intermediate phase s with tetragonal structure merely appears near the interface between laser alloying coating and substrate. From the surface of high entropy alloying coating to substrate, it presents the gradual distribution of the mixing entropy from high entropy, medium entropy to low entropy. the microhardness of FeCoCrAlCu laser high entropy alloying coating reaches 8.3 GPa, which is three times as much as that of the Q235 substrate.
Key wordssingle-element base alloy    laser alloying    FeCoCrAlCu    high entropy alloy    coating
收稿日期: 2014-01-06      出版日期: 2014-05-20
:  TG146.4  
基金资助:*国家自然科学基金项目51271126, 辽宁省自然科学基金项目2013020101及沈阳市科技局计划项目F13-318-1-52和F13-070-2-00资助
Corresponding author: ZHANG Song, professor, Tel: (024)25494578, E-mail: songzhang_sy@163.com   
作者简介: 张 松, 女, 1963年生, 教授, 博士

引用本文:

张松, 吴臣亮, 王超, 伊俊振, 张春华. 铁单元素基合金表面激光高熵合金化涂层的制备*[J]. 金属学报, 2014, 50(5): 555-560.
ZHANG Song, WU Chenliang, WANG Chao, YI Junzhen, ZHANG Chunhua. SYNTHESIS OF LASER HIGH ENTROPY ALLOYING COATING ON THE SURFACE OF SINGLE-ELEMENT Fe BASE ALLOY. Acta Metall Sin, 2014, 50(5): 555-560.

链接本文:

http://www.ams.org.cn/CN/10.3724/SP.J.1037.2014.00006      或      http://www.ams.org.cn/CN/Y2014/V50/I5/555

[1] Wang W R, Wang W L, Wang S C, Tsai Y C, Lai C H, Yeh J W. Intermetallics, 2012; 26: 44
[2]  Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y. Adv Eng Mater, 2004; 6: 299
[3] Chuang M H, Tsai M H, Wang W R, Lin S U, Yeh J W. Acta Mater, 2011; 59: 6308
[4] Zhang Y. Metallic Glasses and High Entropy Alloys. Beijing: Science Press, 2010: 69(张 勇. 非晶和高熵合金. 北京: 科学出版社, 2010: 69)
[5] Hsu C Y, Sheu T S, Yeh J W, Chen S K. Wear, 2010; 268: 653
[6] Yeh J W, Chen Y L, Lin S J, Chen S K. Mater Sci Forum, 2007; 560: 1
[7] Tang W Y, Chuang M H, Lin S J, Yeh J W. Metall Mater Trans, 2012; 43A: 2390
[8] Chen M, Liu Y, Li Y X, Chen X. Acta Metall Sin, 2007; 43: 1020(陈 敏, 刘 源, 李言祥, 陈 祥. 金属学报, 2007; 43: 1020)
[9] Zhang H, Pan Y, He Y Z. Mater Des, 2011; 32: 1910
[10] Wen L H, Kou H C, Li J S, Chang H, Xue X Y, Zhou L. Intermetallics, 2009; 17: 266
[11] Zhang H, Pan Y, He Y Z. Acta Metall Sin, 2011; 47: 1075(张 晖, 潘 冶, 何宜柱. 金属学报, 2011; 47: 1075)
[12] Huang C, Zhang Y Z, Vilar R, Shen J Y. Mater Des, 2012; 41: 338
[13] Zhang H, Pan Y, He Y Z, Jiao H S. Appl Surf Sci, 2011; 257: 2259
[14] Tsau C H. Intermetallics, 2001; 9: 1085
[15] Assadi H, Reutzel S, Herlach D M. Acta Mater, 2006; 54: 2793
[16] Zhang S, Zhang C H, Man H C, Wu W T, Wang M C. Trans Nonferrous Met Soc, 2001; 11: 838
[17] Zhang C H, Zhang S, Man H C, Liu C S, Cai Q K. Rare Met Mater Eng, 2005; 34: 701(张春华, 张 松, 文效忠, 刘常升, 才庆魁. 稀有金属材料与工程, 2005; 34: 701)
[18] Zhang S, Zhang C H, Wu W T, Wang M C. Acta Metall Sin, 2001; 37: 315(张 松, 张春华, 吴维 , 王茂才. 金属学报, 2001; 37: 315)
[19] Qiu X W, Zhang Y P, He L, Liu C G. J Alloys Compd, 2013; 549: 195
[20] Swalin R A. Thermodynamics of Solid. 2nd ed., New York: Wiley, 1991: 21
[1] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[2] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
[3] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
[4] 王文琴, 王昭漫, 李玉龙, 王德, 李淼, 陈情. 电阻缝焊法制备铁基WC/金属双层涂层及其摩擦行为[J]. 金属学报, 2019, 55(4): 537-546.
[5] 杨莎莎,杨峰,陈明辉,牛云松,朱圣龙,王福会. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响[J]. 金属学报, 2019, 55(3): 308-316.
[6] 操发春, 吴航, 杨延格, 曹京宜, 张涛, 王福会. γ-APS接枝环氧树脂分子对环氧涂层/金属界面化学键合的研究[J]. 金属学报, 2019, 55(2): 238-248.
[7] 廖依敏, 丰敏, 陈明辉, 耿哲, 刘阳, 王福会, 朱圣龙. TiAl合金表面搪瓷基复合涂层与多弧离子镀NiCrAlY涂层的抗热腐蚀行为对比研究[J]. 金属学报, 2019, 55(2): 229-237.
[8] 梁秀兵, 范建文, 张志彬, 陈永雄. 铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究[J]. 金属学报, 2018, 54(8): 1193-1203.
[9] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[10] 范超, 贾清, 崔玉友, 杨锐. 基于溶胶-凝胶法的YAlO3/Ti2AlC复合涂层在干燥与热分解过程中的开裂行为研究[J]. 金属学报, 2018, 54(7): 991-998.
[11] 杨海欧, 尚旭亮, 王理林, 王志军, 王锦程, 林鑫. 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响[J]. 金属学报, 2018, 54(6): 905-910.
[12] 蒋成洋, 阳颖飞, 张正义, 鲍泽斌, 朱圣龙, 王福会. 一种Zr改性双相PtAl2+(Ni, Pt)Al涂层的制备及热腐蚀行为研究[J]. 金属学报, 2018, 54(4): 581-590.
[13] 任维鹏, 李青, 黄强, 肖程波, 何利民. 定向凝固镍基高温合金DZ466表面CoAl涂层的氧化及组织演变[J]. 金属学报, 2018, 54(4): 566-574.
[14] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[15] 郭策安, 陈明辉, 廖依敏, 苏北, 谢冬柏, 朱圣龙, 王福会. 模拟燃气热冲击条件下搪瓷基复合涂层的防护机理研究[J]. 金属学报, 2018, 54(12): 1825-1832.