Please wait a minute...
金属学报
  论文 本期目录 | 过刊浏览 |
AlCrTaTiNi/(AlCrTaTiNi)N双层扩散阻挡层的制备及热稳定性
张立东,王飞,陈顺礼,汪渊
四川大学原子核科学技术研究所教育部辐射物理及技术重点实验室, 成都 610064
FABRICATION AND THERMAL STABILITY OF AlCrTaTiNi/(AlCrTaTiNi)N BILAYER DIFFUSION BARRIER
ZHANG Lidong, WANG Fei, CHEN Shunli, WANG Yuan
Key Laboratory for Radiation Physics and Technology of Education Ministry of China, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064
全文: PDF(1875 KB)  
摘要: 

通过多靶共溅射的方法, 制备了(AlCrTaTiNi)N和双层AlCrTaTiNi/(AlCrTaTiNi)N 扩散阻挡层, 并利用XRD,EDS和SEM研究了其组织结构、相组成及在高温下的热稳定性能. 结果表明,Cu/(AlCrTaTiNi)N/Si经500℃退火后界面处已有脱开倾向, 700℃后Cu膜则完全脱落.AlCrTaTiNi可增强Cu和(AlCrTaTiNi)N的粘附性.AlCrTaTiNi/(AlCrTaTiNi)N 经800℃退火后仍能起到有效的扩散阻挡性能,900℃下出现了深能级的Cu--Si相, 方块电阻急剧升高, 表明该阻挡层失效.

关键词 高熵合金双层扩散阻挡层热稳定性    
Abstract

The (AlCrTaTiNi)N and AlCrTaTiNi/(AlCrTaTiNi)N thin films were deposited on Si substrates as copper interconnects diffusion barriers by magnetron sputtering methods. The phase structure, phase composition and thermal stability at high temperature were investigated by XRD, EDS and SEM in this work, respectively. The results indicate that the gap could be observed between Cu and (AlCrTaTiNi)N layers when the samples were annealed at 500℃ for 30 min, and the Cu film fall off at 700℃ under visual conditions. The bonding properties of Cu and (AlCrTaTiNi)N layers can be improved by inserting a AlCrTaTiNi layer. The XRD patterns, SEM cross-sectional micrographs and sheet resistance data show that the AlCrTaTiNi/(AlCrTaTiNi)N bilayers is stable up to 800℃.

Key wordsHigh-entropy alloy    bilayer diffusion barrier    thermal stability
收稿日期: 2013-04-23      出版日期: 2013-12-11
基金资助:

国家自然科学基金项目51171124和50771069, 教育部新世纪人才基金NCET--08--0380, 四川省科技支撑计划基金项目07FG001-017资助

通讯作者: 陈顺礼     E-mail: chenshunli@scu.edu.cn
作者简介: 张立东, 男, 1985年生, 硕士生

引用本文:

张立东,王飞,陈顺礼,汪渊. AlCrTaTiNi/(AlCrTaTiNi)N双层扩散阻挡层的制备及热稳定性[J]. 金属学报, 10.3724/SP.J.1037.2013.00207.
ZHANG Lidong, WANG Fei, CHEN Shunli, WANG Yuan. FABRICATION AND THERMAL STABILITY OF AlCrTaTiNi/(AlCrTaTiNi)N BILAYER DIFFUSION BARRIER. Acta Metall Sin, 2013, 49(12): 1611-1616.

链接本文:

http://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00207      或      http://www.ams.org.cn/CN/Y2013/V49/I12/1611

[1] Chen Y Y, Duval T, Hung U, Yeh J W, Shih H C. Corros Sci, 2005; 47: 2257
[2] Zhu J M , Fu H M , Zhang H F, Wang A M , Li H , Hu Z Q . Mater Sci Eng, 2010; A527: 6975
[3] Tang W Y, Chuang M H, Chen H Y, Yeh J W. Surf Coat Technol, 2010; 204: 3118
[4] Chou Y L, Yeh J W, Shih H C. Corros Sci, 2010; 52: 2571
[5] Chen Y Y, Duval T, Hung U D, Corros Sci, 2005; 47: 2679
[6] Yeh J W, Chen S K, Lin S J , Gan J Y, Chin T, Tsau T T, Chang S Y. Adv Eng Mater,2004; 6: 299
[7] Chang S Y, Chen M K. Thin Solid Films, 2009; 517: 4961
[8] Tsai M H, Yeh J W, Gan J Y. Thin Solid Films, 2008; 516: 5527.
[9] Chang S Y, Chen D S . Appl Phys Lett, 2009; 94: 243
[10] Chang S Y, Wang C Y, Li C E, Huang Y C. NanoSci NanoTechnol Lett, 2011; 3: 289
[11] Chang S Y, Li C E, Huang Y C, Huang Y C. J Alloys Compd, 2012; 515: 4
[12] Chang S Y, Chen D S. Mater Chem Phys, 2011; 125: 5
[13] Zhao C R, Du H, Liu M X, Han Z S. Semicond Technol, 2008; 33: 374
(赵超荣, 杜寰, 刘梦新, 韩郑生. 半导体技术, 2008; 33: 374)
[14] Ogawa E T, Lee K D, Matsuhashi H, Ko K S, Justison P R, Ramamurthi A N,Bierwag A J, Ho P S. 39th Annual International Reliability Physics Symposium Proceedings,Oriando, Florida: IEEE, 2001: 341
[15] Wang L, Cao Z H, Hu K, She Q W, Meng X K. Mater Chem Phys, 2012; 135: 806
[16] Liu C H, Liu W, Wang Y H, An Z, Song Z X, Xu K W. Microelectron Eng, 2012; 98: 80
[17] Wang Y S, Lee W H, Wang Y L, Hung C C, Chang S C. J Phys Chem Solids, 2008; 69: 601
[18] Yang L Y, Zhang D H, Li C Y, Foo P D. Thin Solid Films, 2004; 462--463: 176
[19] Tsao J C, Liu C P, Wang Y L, Chen K W, Lo K Y. J Phys Chem Solids, 2008; 69: 561
[20] Traving M, Zienert I, Zschech E, Schindler G, Steinh$\ddot{\rm o$gl W, Engelhardt M.Appl Surf Sci, 2005; 252: 11
[21] Jacquemin J P, Labonne E, Yalicheff C, Royet E, Vannier P, Delsol R,Normandon P. Microelectron Eng, 2005; 82: 613
[22] Hubner R, Hecker M, Mattern N, Hoffmann V, Wetzig K, Wenger C, Engelmann H J,Wenzel C, Zschech E, Bartha J W. Thin Solid Films, 2003; 437: 248
[23] Zhang H Q, Slade C G, Antoinette M. J Mater Res, 2011; 26: 633
[24] Shi C X, Zhong Q P, Li C G. The Dictionary of Chinese Materials Engineering.Beijing: Chemical Industry Press, 2005: 160
(师昌绪, 钟群鹏, 李成功. 中国材料工程大典. 北京: 化学工业出版社, 2005: 160)
[25] Shen Y L, Guo Y L, Minor C A. Acta Mater, 2000; 48: 1667
[26] Davis J A, Meindl J D, translated by Luo Z Y, Ye Z C, Lv Y Q, Yu W J.Interconnect Technology and Design for Gigascale Integration.Beijing: China Machine Press, 2010: 128
(Davis J A, Meindl J D~著, 骆祖莹, 叶作昌, 吕勇强, 喻文健 译.吉规模集成电路互联工艺及设计. 北京: 机械工业出版社, 2010: 128)
[27] Song Z X, Ju X H, Xu K W. Acta Metall Sin, 2002; 38: 723
(宋忠孝, 鞠新华, 徐可为. 金属学报, 2002; 38: 723)
[28] Song Z X, Xu K W, Chen H. Microelectron Eng, 2004; 71: 28
[29] Ryu C, Kwon K W, Loke A L S, Lee H, Nogami T, Dubin V M, Kavari R A, Ray G W,Wong S S. IEEE Trans Electron Devices, 1999; 46: 1113
[30] Zheng G F, Fu J H, Li Y T, Du S W, Jiang L W. Heat Treat Met, 2013; 38: 113
(郑光锋, 付建华, 李永堂, 杜诗文, 蒋立文. 金属热处理, 2013; 38: 113)
[31] Bai X Y, Wang Y, Xu K W. Rare Met Mater Eng, 2005; 34: 259
(白宣羽, 汪渊, 徐可为. 稀有金属材料与工程, 2005; 34: 259)
[32] Yang Y T. Microelectron Technol, 2000; 28(1): 37
(杨银堂. 微电子技术, 2000; 28(1): 37 )
[33] Cao Z H, Hu K, Meng X K. J Appl Phys, 2009; 106: 113513
[1] 邹建雄,刘波,林黎蔚,任丁,焦国华,鲁远甫,徐可为. MoC掺杂钌基合金无籽晶阻挡层微结构及热稳定性研究[J]. 金属学报, 2017, 53(1): 31-37.
[2] 吴臣亮,张松,张春华,关锰,谭俊哲. 不锈钢表面FeCoCrAlCuNiMox激光高熵合金化层的相演变*[J]. 金属学报, 2016, 52(7): 797-803.
[3] 郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
[4] 刘刚, 李超, 马野, 张瑞君, 刘勇凯, 沙玉辉. 异步轧制硅钢表面纳米结构稳定性与渗硅行为*[J]. 金属学报, 2016, 52(3): 307-312.
[5] 杨滨, 李鑫, 罗文东, 李宇翔. 微量添加Sn和Nb对Zr-Cu-Fe-Al块体非晶合金热稳定性和塑性的影响[J]. 金属学报, 2015, 51(4): 465-472.
[6] 罗新民, 王翔, 陈康敏, 鲁金忠, 王兰, 张永康. 激光冲击诱导的航空铝合金表层高熵结构及其抗蚀性[J]. 金属学报, 2015, 51(1): 57-66.
[7] 张松, 吴臣亮, 王超, 伊俊振, 张春华. 铁单元素基合金表面激光高熵合金化涂层的制备*[J]. 金属学报, 2014, 50(5): 555-560.
[8] 柳文波,张弛,杨志刚,夏志新,高古辉,翁宇庆. 表面纳米化对低活化钢的组织及其热稳定性的影响[J]. 金属学报, 2013, 49(6): 707-716.
[9] 方璐,丁贤飞,张来启,郝国建,林均品. 长期热循环条件下全片层高Nb-TiAl合金显微组织稳定性[J]. 金属学报, 2013, 49(11): 1416-1422.
[10] 张素芳,杨潇,张勇. Al3CrCuFeNi2高熵合金单晶材料的制备及性能[J]. 金属学报, 2013, 49(11): 1473-1480.
[11] 张彦坡,任丁,林黎蔚,杨斌,王珊玲,刘波,徐可为. Cu/Cu(Ge, Zr)/SiO2/Si多层膜界面可控反应及热稳定性研究[J]. 金属学报, 2013, 49(10): 1264-1268.
[12] 郭巍巍,齐成军,李小武. 一个共面双滑移取向Cu单晶体疲劳位错结构的热稳定性研究[J]. 金属学报, 2013, 49(1): 107-114.
[13] 周小卫 沈以赴 顾冬冬. 双脉冲电沉积纳米晶Ni-CeO2复合镀层的微观结构及其高温抗氧化性能[J]. 金属学报, 2012, 48(8): 957-964.
[14] 张晖 潘冶 何宜柱 . 激光熔覆FeCoNiCrAl2Si高熵合金涂层[J]. 金属学报, 2011, 47(8): 1075-1079.
[15] 刘彤 朱亚蓉 张同文 张涛. 加压退火对Gd36La20Al24Co20块体非晶合金晶化行为和热稳定性的影响[J]. 金属学报, 2011, 47(4): 502-506.