Please wait a minute...
金属学报  2012, Vol. 48 Issue (1): 16-22    DOI: 10.3724/SP.J.1037.2011.00421
  论文 本期目录 | 过刊浏览 |
电工钢中黄铜织构行为及其对Goss织构的影响
颜孟奇, 钱浩, 杨平, 宋惠军, 邵媛媛, 毛卫民
北京科技大学材料学院, 北京 100083
BEHAVIORS OF BRASS TEXTURE AND ITS INFLUENCE ON GOSS TEXTURE IN GRAIN ORIENTED ELECTRICAL STEELS
YAN Mengqi, QIAN Hao, YANG Ping, SONG Huijun, SHAO Yuanyuan, MAO Weimin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

颜孟奇 钱浩 杨平 宋惠军 邵媛媛 毛卫民. 电工钢中黄铜织构行为及其对Goss织构的影响[J]. 金属学报, 2012, 48(1): 16-22.
, , , , , . BEHAVIORS OF BRASS TEXTURE AND ITS INFLUENCE ON GOSS TEXTURE IN GRAIN ORIENTED ELECTRICAL STEELS[J]. Acta Metall Sin, 2012, 48(1): 16-22.

全文: PDF(5011 KB)  
摘要: 本文通过EBSD取向成像技术检测追踪了取向硅钢热轧、脱碳退火及二次再结晶过程中黄铜取向晶粒的形成规律. 结果表明, 黄铜取向的形成是热轧时Goss取向在剪切力作用下向铜型取向转动受阻而绕法向转动的结果. 与Goss晶粒和{111}<112>取向晶粒类似, 黄铜取向和 {111}<110>取向晶粒之间存在形变与再结晶相互转化的密切关系; 二次再结晶时若抑制剂钉扎控制不当, 在次表层的Goss晶粒快速长入中心层之前, 黄铜取向晶粒已长成大尺寸并接触样品表面, 随后的Goss大晶粒就很难吞并黄铜取向晶粒.
关键词 取向硅钢织构热轧二次再结晶EBSD    
Abstract:In comparison with the conventional grain-oriented electrical steels (the so-called CGO steels), the high permeability electrical steels (the so-called Hi-B steels) including those of nitrided steels possess higher magnetic properties, but their processing window is narrow. In particular, a near brass--oriented texture which rotated around the normal direction of sheets from Goss orientation is often observed in improperly processed sheets of Hi-B steels, i.e, this type of sheet possesses a correct morphological structure of well abnormally grown grains, but a poor crystallographic texture with low magnetic properties. The underlying mechanism is less dealt with in literature in comparison with the formation of Goss texture. Thus, the objective of this work is to analyze the formation mechanism of this texture component. For this purpose, XRD and EBSD technique were applied to reveal both macro- and micro-textures from the shear texture of hot rolled plate surface to primarily and secondarily annealed sheets paying particular attention to the origin and relationship of Brass-oriented grains with their surrounding grains. It is demonstrated that Brass-oriented grains are formed by the rotation of Goss-oriented grains around the normal direction in the sheared surface layer of hot rolled plate when the shearing around transverse direction is restrained. Compared with the close relation between Goss and {111}<112> oriented grains, similar behaviors during cold rolling and annealing occur between brass-- and {111}<110>-oriented grains, namely, the latter are also inclined to be adjacently related and mutual transformation could occur between those deformation grains and recrystallization grains. In particular, a higher rolling reduction reduces Goss grain number much significantly, whereas it favors the retention of brass- and {111}<110>-oriented grains leading to preferred growth of brass-oriented grains. In the condition of easy growth of Brass grains with their {110} being parallel to rolling plane like Goss grains in the thinner sheets, the much fewer Goss grains could not swallow the brass-oriented grains. Thus, this technical issue of producing grain oriented electrical steels with high magnetic properties can be understood in terms of fundamentals of texture evolution during deformation and recrystallization of bcc metals.
Key wordsgrain oriented electrical steel    texture    hot rolling    secondary recrystallization    EBSD
收稿日期: 2011-07-07     
基金资助:

国家自然科学基金资助项目51071024

[1] Hu H. Acta Metall, 1960; 8: 124

[2] Hu H. Trans Metall Soc AIME, 1961; 211: 130

[3] Ushioda K, Hutchinson W B. ISIJ Int, 1989; 29: 862

[4] Bottcher A, Lucke K. Acta Metall Mater, 1993; 41: 2503

[5] Inokuti Y, Maeda C, Tanaka T. J JIM, 1985; 49: 417

[6] Inokuti Y, Maeda C, Ito Y. Trans ISIJ, 1987; 27: 303

[7] May J, Turnbull D. Trans Metall Soc AIME, 1958; 212: 769

[8] Misha S, Darmann C, Lucke K. Metall Mater Trans, 1986; 17A: 1301

[9] Shimizu R, Harase J. Acta Metall, 1989; 37: 1241

[10] Harase J, Shimizu R, Takashima K. J JIM, 1988; 52: 259

[11] Harase J, Shimizu R. Trans JIM, 1988; 29: 388

[12] Shimizu R, Harase J. J JIM, 1989; 53: 571

[13] Hayakawa Y, Szpunar J. Acta Mater, 1997; 45: 1285

[14] Rajmohan N, Szpunar J, Hayakawa Y. Mater Sci Eng, 1999; A259: 8

[15] Hayakawa Y, Kurosawa M. Acta Mater, 2002; 50: 4527

[16] Homma H, Hutchinson B. Acta Mater, 2003; 51: 3795

[17] Homma H, Hutchinson B, Kubota T. J Magn Magn Mater, 2003; 254–255: 331

[18] Ko K J, Cha P R, Srolovitz D, Hwang N M. Acta Mater, 2009; 57: 838

[19] Inagaki H, Suda T. Texture, 1972; 1: 129

[20] Yoshitomi Y, Ushigami Y, Harase J, Nakayama T, Masui H, Takahashi N. Acta Metall Mater, 1994; 42: 2593

[21] Takamaya T, Kurosawa M, Komatubara M. J Magn Magn Mater, 2003; 254–255: 334

[22] Pospiech J, Jura J. Metallkunde Z, 1974; 65: 324

[23] Cui F E, Yang P, Mao W M. Trans Mater Heat Treat, 2011; 32: 38

(崔凤娥, 杨平, 毛卫民. 材料热处理学报, 2011; 32: 38)

[24] Harase J, Shimizu R. J Magn Magn Mater, 2000; 215–216: 89

[25] Yan M Q, Qian H, Yang P, Mao W M, Jiang Q W, Jin W X. J Mater Sci Technol, 2011; 27: 1065
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[3] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[4] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[6] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[8] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[9] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[10] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[11] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[12] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[13] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[14] 吴翔,左秀荣,赵威威,王中洋. NM500耐磨钢拉伸过程中TiN的破碎机制[J]. 金属学报, 2020, 56(2): 129-136.
[15] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.