Please wait a minute...
金属学报  2018, Vol. 54 Issue (8): 1105-1112    DOI: 10.11900/0412.1961.2017.00487
  本期目录 | 过刊浏览 |
Si和Mn含量对超高强度热成形钢组织和性能的影响
胡宽辉1,2(), 毛新平2, 周桂峰1,2, 刘静1, 王志奋2
1 武汉科技大学材料与冶金学院 武汉 430081
2 宝钢股份中央研究院武汉分院(武钢有限技术中心) 武汉 430080
Effect of Si and Mn Contents on the Microstructure and Mechanical Properties of Ultra-High Strength Press Hardening Steel
Kuanhui HU1,2(), Xinping MAO2, Guifeng ZHOU1,2, Jing LIU1, Zhifen WANG2
1 College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 Wuhan Branch of Baosteel Central Research Institute (R&D Center of Wuhan Iron & Steel Co., Ltd.),Wuhan 430080, China;
全文: PDF(12866 KB)   HTML
摘要: 

采用OM、SEM、EBSD和TEM等技术,研究了Si、Mn含量对超高强度热成形钢在相同的轧制和模拟热冲压成形工艺处理后的组织和性能的影响。结果表明,Si、Mn含量对热成形前轧制态钢的组织和性能有较大影响,在其它成分相同的情况下,随着Mn含量(质量分数)由0.57%增加到1.21%,实验用钢的屈服强度由552 MPa提高到751 MPa,抗拉强度由757 MPa提高到1124 MPa,组织由贝氏体+铁素体+珠光体转变为马氏体+贝氏体。随着Si含量由0.25%增加到0.38%,实验用钢的抗拉强度逐渐升高,屈服强度和伸长率呈波动趋势。在950 ℃保温5 min相同的工艺条件下模拟热冲压淬火实验后,4种钢的组织均为马氏体,但马氏体的精细结构各不相同,平均亚晶粒尺寸大小不一;含0.34%Si和1.21%Mn的钢B的综合力学性能最优,其屈服强度为1161 MPa,抗拉强度为1758 MPa,伸长率为6.5%,且热冲压成形后的组织为细小的板条马氏体,马氏体板条上有大量的位错,且只有少量的碳化物析出。基于本研究成分设计的超高强度热成形钢,其热冲压成形前的组织和性能与热成形后的力学性能无明显相关性,只是最终的马氏体精细结构略有差别,有利于工业化批量试制零件的性能稳定性控制。

关键词 热成形钢马氏体过冷奥氏体超高强度    
Abstract

It is very important to find out the mechanism of composition in steel. Many efforts have been put on the study of the effect of Si and Mn elements on the microstructure and mechanical properties of middle Mn steel, transformation induced plasticity (TRIP) steel and quenching and partitioning (Q&P) steel. But fewer studies were focused on the mechanism of Si and Mn contents in a press hardening steel. In this work, the microstructures after hot rolled and the fine martensite structure after hot stamping in ultra-high strength press hardening steel (PHS) with different Si and Mn contents were studied by OM, SEM, EBSD and TEM. The results showed that there are a great influence of Si and Mn contents on the microstructure and mechanical properties of PHS after hot rolled. The yield strength of the PHS increases from 552 MPa to 751 MPa, the ultimate tensile strength (UTS) increases from 757 MPa to 1124 MPa, and the microstructures are different with the Mn content rose from 0.57% to 1.21% and the other components remained the same. The UTS of the steels goes up as the Si content goes up from 0.25% to 0.38%, and the yield strength and the elongation show a fluctuation trend. After simulating hot stamping process at 950 ℃ and holding 5 min, the microstructure of the steels with different compositions is martensite, but it is different in the fine martensite structure and the average size of sub-grain; after hot stamping process, the comprehensive mechanical properties of the steel B with 0.30%C, 0.34%Si and 1.21%Mn are the most outstanding, the yield strength is 1161 MPa, the UTS is 1758 MPa, and the elongation is 6.5%; after hot stamping process, the microstructure of the steel B is fine lath martensite, and there is a large amount of dislocation in the martensite lath, and precipitates a small number of carbide. The mechanical properties of the ultra-high strength press hardening steels designed in this work is not obvious correlation before and after hot stamping process, and it is just a slight difference in martensite fine structure which is beneficial to controlling the performance stability of the mass industrial production.

Key wordspress hardening steel    martensite    undercooling austenite    ultra-high strength
收稿日期: 2017-11-20      出版日期: 2018-04-19
ZTFLH:  TG142  
作者简介:

作者简介 胡宽辉,男,1978年生,博士

引用本文:

胡宽辉, 毛新平, 周桂峰, 刘静, 王志奋. Si和Mn含量对超高强度热成形钢组织和性能的影响[J]. 金属学报, 2018, 54(8): 1105-1112.
Kuanhui HU, Xinping MAO, Guifeng ZHOU, Jing LIU, Zhifen WANG. Effect of Si and Mn Contents on the Microstructure and Mechanical Properties of Ultra-High Strength Press Hardening Steel. Acta Metall Sin, 2018, 54(8): 1105-1112.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2017.00487      或      http://www.ams.org.cn/CN/Y2018/V54/I8/1105

Steel C Si Mn P S Als Cr+Mo+Nb Fe
A 0.29 0.33 0.57 0.005 0.003 0.027 <0.80 Bal.
B 0.30 0.34 1.21 0.005 0.004 0.030 <0.80 Bal.
C 0.30 0.25 1.20 0.005 0.003 0.027 <0.80 Bal.
D 0.30 0.38 1.20 0.005 0.003 0.031 <0.80 Bal.
表1  实验用钢的化学成分
图1  实验用钢870 ℃终轧并空冷后显微组织的OM像
Steel Before After
Rp0.2 / MPa Rm / MPa A50 mm / % Rp0.2 / MPa Rm / MPa A50 mm / %
A 552 757 20.4 1102 1686 7.2
B 751 1124 9.4 1161 1758 6.5
C 783 924 11.7 1073 1644 6.0
D 770 1196 12.6 1108 1705 6.5
表2  热处理前后实验用钢的力学性能
图2  实验用钢热处理后显微组织的OM像
图3  实验用钢热处理后显微组织的SEM像
图4  实验用钢热处理后的EBSD像
图5  实验用钢热处理后显微组织的TEM像
[1] Naderi M, Durrenberger L, Molinari A, et al.Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures[J]. Mater. Sci. Eng., 2008, A478: 130
[2] Merklein M, Lechler J, Geiger M.Characterisation of the flow properties of the quenchenable ultra high strength steel 22MnB5[J]. CIRP Ann., 2006, 55: 229
[3] Turetta A, Bruschi S, Ghiotti A.Investigation of 22MnB5 formability in hot stamping operations[J]. J. Mater. Process. Technol., 2006, 177: 396
[4] Xing Z W, Bao J, Yang Y Y.Numerical simulation of hot stamping of quenchable boron steel[J]. Mater. Sci. Eng., 2009, A499: 28
[5] Min J Y, Lin J P, Li J Y, et al.Investigation on hot forming limits of high strength steel 22MnB5[J]. Comput. Mater. Sci., 2010, 49: 326
[6] Liu H S, Liu W, Bao J, et al.Numerical and experimental investigation into hot forming of ultra high strength steel sheet[J]. J. Mater. Eng. Perform., 2011, 20: 1
[7] Naderi M, Ketabchi M, Abbasi M, et al.Analysis of microstructure and mechanical properties of different boron and non-boron alloyed steels after being hot stamped[J]. Procedia Eng., 2011, 10: 460
[8] Li H Z, Wu X, Li G Y.Prediction of forming limit diagrams for 22MnB5 in hot stamping process[J]. J. Mater. Eng. Perform., 2013, 22: 2131
[9] Liu H S, Lei C X, Xing Z W.Cooling system of hot stamping of quenchable steel BR1500HS: Optimization and manufacturing methods[J]. Int. J. Adv. Manuf. Technol., 2013, 69: 211
[10] Wang X N, Ma F W, Liu Q, et al.Research on holding pressure and cooling process during hot forming of ultra-high strength steel 22MnB5 [A]. Proceedings of the FISITA 2012 World Automotive Congress[C]. Berlin: Springer-Verlag, 2013: 123
[11] Li F F, Fu M W, Lin J P, et al.Experimental and theoretical study on the hot forming limit of 22MnB5 steel[J]. Int. J. Adv. Manuf. Technol., 2014, 71: 297
[12] Shi D Y, Hu P, Ying L.Comparative study of ductile fracture prediction of 22MnB5 steel in hot stamping process[J]. Int. J. Adv. Manuf. Technol., 2016, 84: 895
[13] Min J Y, Lin J P, Min Y A, et al.On the ferrite and bainite transformation in isothermally deformed 22MnB5 steels[J]. Mater. Sci. Eng., 2012, A550: 375
[14] So H, Fa?mann D, Hoffmann H, et al.An investigation of the blanking process of the quenchable boron alloyed steel 22MnB5 before and after hot stamping process[J]. J. Mater. Process. Technol., 2012, 212: 437
[15] Karbasian H, Tekkaya A E.A review on hot stamping[J]. J. Mater. Process. Technol., 2010, 210: 2103
[16] Venturato G, Novella M, Bruschi S.Effects of phase transformation in hot stamping of 22MnB5 high strength steel[J]. Procedia Eng., 2017, 183: 316
[17] Mori K, Bariani P F, Behrens B A, et al.Hot stamping of ultra-high strength steel parts[J]. CIRP Ann., 2017, 66: 755
[18] Lu J, Song Y L, Hua L, et al.Influence of thermal deformation conditions on the microstructure and mechanical properties of boron steel[J]. Mater. Sci. Eng., 2017, A701: 328
[19] Zhao Z Z, Tong T T, Zhao A M, et al.Effect of Mn and Si on the microstructure and mechanical properties of medium manganese hot-rolled high-strength steel[J]. J. Univ. Sci. Technol. Beijing, 2014, 36(suppl.1): 133(赵征志, 佟婷婷, 赵爱民等. Mn和Si对中锰热轧高强钢组织和性能的影响[J]. 北京科技大学学报, 2014, 36(增刊): 133)
[20] Li L F, Yang W Y, Sun Z Q.Influence of Mn content on dynamic recrystallization of ferrite in low carbon steels[J]. Acta Metall. Sin., 2004, 40: 1257(李龙飞, 杨王玥, 孙祖庆. Mn含量对低碳钢中铁素体动态再结晶的影响[J]. 金属学报, 2004, 40: 1257)
[21] Li Z D, Miyamoto G, Yang Z G, et al.Effects of Mn and Si additions on pearlite-austenite phase transformation in Fe-0.6C steel[J]. Acta Metall. Sin., 2010, 46: 1066(李昭东, 宫本五郎, 杨志刚等. Mn 和Si对Fe-0.6C钢中珠光体-奥氏体相变的影响[J]. 金属学报, 2010, 46: 1066)
[22] Yin H X, Zhao A M, Zhao Z Z, et al.Effects of Mn content on microstructure and mechanical properties of a low carbon medium-manganese TRIP steel[J]. Mater. Sci. Technol., 2014, 22(3): 11(尹鸿祥, 赵爱民, 赵征志等. Mn含量对低碳中锰TRIP钢组织性能的影响[J]. 材料科学与工艺, 2014, 22(3): 11)
[23] Chen L S, Zhang J Y, Tian Y Q, et al.Effects of Mn partitioning on microstructure and mechanical properties of low-carbon Q&P steel[J]. Heat Treat. Met., 2015, 40(9): 130(陈连生, 张健杨, 田亚强等. Mn配分行为对低碳高强Q&P钢组织与性能的影响[J]. 金属热处理, 2015, 40(9): 130)
[24] Wang H, Shi W, He Y L, et al.Study of Mn and P solute distributions and their effect on the tensile behavior in ultra low carbon bake hardening steels[J]. Acta Metall. Sin., 2011, 47: 263(王华, 史文, 何燕霖等. Mn和P在超低碳烘烤硬化钢中的分布形态及其对拉伸行为的影响研究[J]. 金属学报, 2011, 47: 263)
[25] Shi W, Li L, Zhou Y, et al.Effect of Mn content on microstructures and mechanical properties of cold rolled 0.15C-0.6Si-Mn TRIP steels[J]. Heat Treat. Met., 2002, 27(8): 9(史文, 李麟, 周媛等. Mn含量对0.15C-0.6Si-Mn TRIP钢组织和力学性能的影响[J]. 金属热处理, 2002, 27(8): 9)
[26] Wang L J, Yu W, Wu H B, et al.Effects of Si on tempering stability of retained austenite and mechanical properties of ultra-high strength steels[J]. Trans. Mater. Heat Treat., 2002, 31: 31(王立军, 余伟, 武会宾等. Si对超高强钢残留奥氏体回火稳定性与力学性能的影响[J]. 材料热处理学报, 2010, 31: 31)
[27] Huang B X, Wang C Z, Wang X D, et al.Effect of nitrogen on martensitic transformation and mechanical properties of TWIP steel[J]. Acta Metall. Sin., 2012, 48: 769(黄宝旭, 王长征, 王晓东等. N对TWIP钢马氏体相变及力学性能的影响[J]. 金属学报, 2012, 48: 769)
[1] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[2] 崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展[J]. 金属学报, 2019, 55(1): 45-58.
[3] 魏铖, 柯常波, 马海涛, 张新平. 基于序参量梯度的改进相场模型及对大尺度体系马氏体相变的模拟研究[J]. 金属学报, 2018, 54(8): 1204-1214.
[4] 杨柯, 牛梦超, 田家龙, 王威. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报, 2018, 54(11): 1567-1585.
[5] 马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.
[6] 韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
[7] 胡小锋, 姜海昌, 赵明久, 闫德胜, 陆善平, 戎利建. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能[J]. 金属学报, 2018, 54(1): 1-10.
[8] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[9] 王学,胡磊,陈东旭,孙松涛,李立全. 马氏体相变对9%Cr热强钢管道多道焊接头残余应力演化的影响[J]. 金属学报, 2017, 53(7): 888-896.
[10] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[11] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[12] 袁训华, 张启富. 22MnB5热成形钢奥氏体化时热镀Al-10%Si镀层组织的演化[J]. 金属学报, 2017, 53(11): 1495-1503.
[13] 王丽娜,杨平,毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析*[J]. 金属学报, 2016, 52(9): 1045-1052.
[14] 史金涛,侯陇刚,左锦荣,卢林,崔华,张济山. 304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征*[J]. 金属学报, 2016, 52(8): 945-955.
[15] 宋鹏程,柳文波,陈磊,张弛,杨志刚. 形状记忆合金Au30Cu25Zn45中热弹性马氏体相变的相场模拟*[J]. 金属学报, 2016, 52(8): 1000-1008.