Please wait a minute...
金属学报  2017, Vol. 53 Issue (11): 1478-1486    DOI: 10.11900/0412.1961.2016.00556
  研究论文 本期目录 | 过刊浏览 |
烧结Ce-Fe-B磁体的力学性能
李安华1(), 张月明1, 冯海波1, 邹宁2, 吕忠山2, 邹旭杰2, 李卫1
1 钢铁研究总院功能材料研究所 北京 100081
2 宁波复能新材料有限公司 宁波 315336
Mechanical Properties of Sintered Ce-Fe-B Magnets
Anhua LI1(), Yueming ZHANG1, Haibo FENG1, Ning ZOU2, Zhongshan LÜ2, Xujie ZOU2, Wei LI1
1 Division of Functional Material, Central Iron & Steel Research Institute, Beijing 100081, China
2 Ningbo Funeng New Material Company, Ningbo 315336, China
全文: PDF(4603 KB)   HTML
  
摘要: 

以不同Ce含量的系列商业磁体(R1-xCex)30.5~31.5Febal.B1M1 (质量分数,%)为研究对象,测试Ce-Fe-B磁体的抗弯强度、断裂韧性、硬度及脆性指数等性能,并对磁体的微观断口进行SEM和EDS分析。结果表明,含Ce磁体的抗弯强度和断裂韧性随Ce含量的增加呈减小的趋势,其Vickers硬度随Ce含量(x)的变化规律不明显。当x=0.15时,磁体力学性能出现极大值,磁体的抗弯强度、断裂韧性及脆性指数等力学指标均明显优于普通烧结Nd-Fe-B磁体;在此磁体中发现较多的“絮状”氧化物相存在,絮状相在裂纹扩展过程中会吸收一部分能量,可以缓解裂纹尖端的应力集中状态,因而起到强化和韧化的作用,对提高磁体的力学性能有利。当磁体中的Ce含量达到x=0.45时,磁体的力学性能明显变差,这是因为:此时磁体中有大晶粒出现,磁体的微观结构明显劣化。不同Ce含量磁体的断裂微观机制主要为沿晶断裂。

关键词 烧结Ce-Fe-B磁体力学性能加工性能断裂机理    
Abstract

The (R, Ce)-Fe-B magnets have been successfully industrialized in recent years. The mechanical property of sintered permanent magnets is one important aspect of their comprehensive performances, which directly influences the service reliability and the production cost. In this work, the bending strength, fracture toughness, Vickers hardness and brittleness index of commercial (R1-xCex)30.5’31.5Febal.-B1M1 (mass fraction, %) magnets with different Ce contents have been investigated. The microfractures of the magnets were observed by SEM equipped with EDS. It shows that the bending strength and the fracture toughness of (R, Ce)-Fe-B magnets have a downward tendency with increasing Ce content x, while the Vickers hardness of the magnets varies irregularly with Ce content. The optimum mechanical properties have been obtained in the (R1-xCex)30.5~31.5Febal.-B1M1 magnet with x=0.15; the bending strength, fracture toughness and brittleness index of the magnet with x=0.15 are obviously superior to those of the ordinary sintered Nd-Fe-B magnets. Some flocculent oxide phases have been discovered in the (R, Ce)-Fe-B magnet with x=0.15. The flocculent phases may absorb part of energy during crack propagating, and reduce the stress concentration at a crack tip, which is beneficial to strengthening and toughening of (R, Ce)-Fe-B magnets. However, the mechanical properties are obviously worse for the magnet with x=0.45 (Ce/ΣRE=45%). That is probably because the microstructures of the magnet with x=0.45 become deteriorated, in which abnormally large grains have been observed. The results confirm that the fracture mechanism of sintered (R, Ce)-Fe-B magnets with different Ce contents mainly appears intergranular fracture.

Key wordssintered Ce-Fe-B magnet    mechanical property    machinable property    fracture mechanism
收稿日期: 2016-12-13      出版日期: 2017-06-23
:  TG146.4  
基金资助:国家重点基础研究发展计划项目 No.2014CB643701和国家自然科学基金重点项目No.51331003
作者简介:

作者简介 李安华,女,1975年生,教授,博士

引用本文:

李安华, 张月明, 冯海波, 邹宁, 吕忠山, 邹旭杰, 李卫. 烧结Ce-Fe-B磁体的力学性能[J]. 金属学报, 2017, 53(11): 1478-1486.
Anhua LI, Yueming ZHANG, Haibo FENG, Ning ZOU, Zhongshan LÜ, Xujie ZOU, Wei LI. Mechanical Properties of Sintered Ce-Fe-B Magnets. Acta Metall, 2017, 53(11): 1478-1486.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00556      或      http://www.ams.org.cn/CN/Y2017/V53/I11/1478

图1  磁体抗弯实验和断裂韧性实验示意图
x Br / T Hcj / (kAm-1) Hk / (kAm-1) (BH)max / (kJm-3) Hk /Hcj ρ / (gm-3)
0* 1.27 1630 1547 313 0.95 7.538
0.15 1.32 959 940 335 0.98 7.557
0.30 1.22 1012 964 279 0.95 7.604
0.35 1.17 926 883 252 0.95 7.607
0.40 1.13 910 888 234 0.98 7.617
0.45 1.10 801 752 222 0.94 7.632
表1  烧结(R1-xCex)30.5~31.5Febal.B1M1磁体的磁性能和密度
图2  烧结(R, Ce)-Fe-B磁体抗弯实验的典型载荷-位移曲线
x Rbb / MPa KIC / (MPam1/2) Hv / MPa Hv/KIC / μm-1/2
0 321 3.66 5704 1.56
0.15 394 4.48 5606 1.25
0.3 356 3.83 5782 1.51
0.35 304 3.29 5900 1.79
0.40 306 3.56 5566 1.56
0.45 257 3.27 5753 1.76
表2  烧结(R1-xCex)30.5~31.5Febal.B1M1磁体的力学性能
图3  烧结(R1-xCex)30.5~31.5Febal.B1M1磁体抗弯断口的典型微观形貌
x Atomic fraction / %
O Fe Ce Nd Zr
0.15 65.31 32.45 2.24 - -
0.30 69.69 25.41 4.90 - -
0 28.60 66.59 - 3.72 1.09
表3  实验磁体中氧化物相的EDS分析结果
图4  Ce-Fe-B磁体抗弯试样断口形貌的HRSEM像
图5  实验磁体中氧化物相的EDS谱
图6  烧结(R0.55Ce0.45)30.5~31.5Febal.B1M1磁体的SEM微观结构和断口形貌
[1] Hirosawa S, Matsuura Y, Yamamoto H, et al.Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals[J]. J. Appl. Phys., 1986, 59: 873
[2] Boltich E B, Oswald E, Huang M Q, et al.Magnetic characteristics of R2Fe14B systems prepared with high purity rare earths (Ce, Pr, Dy and Er)[J]. J. Appl. Phys., 1985, 57: 4106
[3] Li D, Bogatin Y.Effect of composition on the magnetic properties of (Ce1-xNdx)13.5(Fe1-y-zCoySiz)80B6.5 sintered magnets[J]. J. Appl. Phys., 1991, 69: 5515
[4] Okada M, Sugimoto S, Ishizaka C, et al.Didymium-Fe-B sintered permanent magnets[J]. J. Appl. Phys., 1985, 57: 4146
[5] Wang J D.Preparation of sintered (Nd, RE)-Fe-B magnet by double main phase alloy method [D]. Beijing: Central Iron and Steel Research Institute, 2012(王景代. 双主相合金法制备烧结(Nd, RE)-Fe-B磁体研究 [D]. 北京: 钢铁研究总院, 2012)
[6] Herbst J F, Meyer M S, Pinkerton F E. Magnetic hardening of Ce2Fe14B [J]. J. Appl. Phys., 2012, 111: 07A718
[7] Yan C J, Guo S, Chen R J, et al.Effect of Ce on the magnetic properties and microstructure of sintered didymium-Fe-B magnets[J]. IEEE Trans. Magn., 2014, 50: 2102605
[8] Huang S L, Feng H B, Zhu M G, et al.Optimal design of sintered Ce9Nd21Febal.B1 magnets with a low-melting-point (Ce, Nd)-rich phase[J]. Int. J. Miner. Metall. Mater., 2015, 22: 417
[9] Li W, Li A H, Huang S L, et al.The study on grain-boundary microstructure of sintered (Ce, Nd)-Fe-B magnets [A], 2015 IEEE International Magnetics Conference[C]. Beijing: IEEE, 2015, 51: 2103603
[10] Pathak A K, Khan M, Gschneidner Jr K A, et al. Cerium: An unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets[J]. Adv. Mater., 2015, 27: 2663
[11] Zhou X Q, Liu S Y, Lü X K, et al.Effects of Ce substitution amount on microstructure and properties of sintered NdFeB magnets[J]. Electr. Compon. Mater., 2013, 32(12): 25(周晓庆, 刘盛业, 吕向科等. Ce取代量对烧结NdFeB磁体微观结构和性能的影响[J]. 电子元件与材料, 2013, 32(12): 25)
[12] Zhang X F, Shi M F, Li P Z, et al.Effect of Ce addition on magnetic properties and microstructure of NdFeB based rare earth permanent magnets[J]. Chin. Rare Earths, 2013, 34(8): 12(张雪峰, 史孟飞, 李培忠等. Ce对NdFeB永磁体磁性能和微观结构的影响[J]. 稀土, 2013, 34(8): 12)
[13] Huang S L.The research of the microstructure and magnetic properties for Ce-containing magnets [D]. Beijing: Central Iron and Steel Research Institute, 2015(黄书林. 含Ce磁体微结构与磁性能的研究 [D]. 北京: 钢铁研究总院, 2015)
[14] Sun T D, Zhu J H, Wang D W.Anisotropic thermal expansion and fracture of radially oriented toroids of RE-Co permanent magnets[J]. Acta Metall. Sin., 1979, 15: 58(孙天铎, 祝景汉, 王德文. 稀土钴永磁合金的各向异性热膨胀性质及辐向取向环体的断裂) [J]. 金属学报, 1979, 15: 58).
[15] Jiang J H, Zeng Z P.Study of alloy elements affecting the fracture strength of sintered NdFeB magnets[J]. Rare Met. Mater. Eng., 1999, 28: 144(蒋建华, 曾振鹏. 合金元素对烧结NdFeB永磁材料断裂强度的影响[J]. 稀有金属材料与工程, 1999, 28: 144)
[16] Zeng Z P.A study of the fracture in sintered NdFeB permanent magnetic materials[J]. Rare Met. Mater Eng., 1996, 25(3): 18(曾振鹏. 烧结NdFeB永磁材料的断裂研究[J]. 稀有金属材料与工程, 1996, 25(3): 18)
[17] Li A H, Dong S Z, Li W.Anisotropy of mechanical properties and fracture behaviour in sintered NdFeB permanent magnetic materials[J]. Rare Met. Mater. Eng., 2003, 32: 631(李安华, 董生智, 李卫. 烧结NdFeB永磁材料的力学性能及断裂行为的各向异性[J]. 稀有金属材料与工程, 2003, 32: 631)
[18] Li A H, Dong S Z, Li W.Mechanical properties of RE permanent magnetic materials[J]. Met. Funct. Mater., 2002, 9(4): 7(李安华, 董生智, 李卫. 稀土永磁材料的力学性能[J]. 金属功能材料, 2002, 9(4): 7)
[19] Li A H, Dong S Z, Li W.Fracture in sintered Sm-Co permanent magnetic materials[J]. Sci. China, 2003, 32A: 241(李安华, 董生智, 李卫. 烧结SmCo永磁材料的断裂[J]. 中国科学, 2002, 32A: 870)
[20] Li A H, Dong S Z, Li W.A study of the anisotropy of mechanical properties and fracture behavior in sintered Sm2Co17 permanent magnetic materials[J]. Acta Phys. Sin., 2002, 51: 2320(李安华, 董生智, 李卫. 烧结Sm2Co17型永磁材料的力学性能及断裂行为的各向异性[J]. 物理学报, 2002, 51: 2320)
[21] Li A H, Li W, Dong S Z, et al.Sintered Nd-Fe-B magnets with high strength[J]. J. Magn. Magn. Mater., 2003, 265: 331
[22] Li A H, Li W, Dong S Z, et al.Effect of minor grain-boundary alloy addition on mechanical properties and microstructure of sintered Nd-Fe-B magnets[J]. Chin. J. Rare Met., 2003, 27: 531(李安华, 李卫, 董生智等. 微量添加晶界合金对烧结Nd-Fe-B力学性能及微观结构的影响[J]. 稀有金属, 2003, 27: 531)
[23] Li A H.A study on the mechanical characteristics and fracture mechanism in RE permanent magnetic materials [D]. Beijing: Central Iron & Steel Research Institute, 2003(李安华. 稀土永磁材料的力学特性及其断裂机理研究 [D]. 北京: 钢铁研究总院, 2003)
[24] Li A H, Dong S Z, Li W.Fracture in sintered Sm-Co permanent magnetic materials[J]. Sci. China, 2003, 46G: 241
[25] Li W, Li A H, Wang H J.Anisotropic fracture behavior of sintered rare-earth permanent magnets[J]. IEEE Trans. Magn., 2005, 41: 2339
[26] Wang H J, Li A H, Zhu M G, et al.Sintered Nd-Fe-B Magnets with improved impact stability[J]. J. Magn. Magn. Mater., 2006, 307: 268
[27] Wang H J, Li A H, Li W.Effect of Pr and Dy substitution on the impact resistance of sintered Nd-Fe-B magnets[J]. Intermetallics, 2006, 15: 985
[28] Li W, Li A H, Wang H J, et al. Study on strengthening and toughening of sintered rare-earth permanent magnets [J]. J. Appl. Phys., 2009, 105: 07A703
[29] Liu J F, Vora P, Walmer M H, et al. Microstructure and magnetic properties of sintered NdFeB magnets with improved impact toughness [J]. J. Appl. Phys., 2005, 97: 10H101
[30] Hu Z H.Research on the magnetic properties, temperature stability and impact toughness of sintered Nd-Fe-B magnets [D]. Shenyang: Northeastern University, 2009(胡志华. 烧结Nd-Fe-B磁体的磁性能、温度稳定性以及冲击韧性研究 [D]. 沈阳: 东北大学, 2009)
[31] Jin J Y, Zhang Y J, Ma T Y, et al.Mechanical properties of La-Ce-substituted Nd-Fe-B magnets[J]. IEEE Trans. Magn., 2016, 52: 2100804
[32] Feng C M, Wang W M, Fu Z Y.Research on machinable ceramic materials[J]. J. Wuhan Univ. Technol., 2004, 26(5): 35(冯彩梅, 王为民, 傅正义. 可加工陶瓷材料及其制造技术的研究进展[J]. 武汉理工大学学报, 2004, 26(5): 35)
[33] Hong G Y.Rare Earth Chemistry Introduction [M]. Beijing: Science Press, 2014: 46, 49, 269(洪广言. 稀土化学导论 [M]. 北京: 科学出版社, 2014: 46, 49, 269)
[34] Herbst J F, Yelon W B. Crystal and magnetic structure of Ce2Fe14B and Lu2Fe14B [J]. . Magn. Magn. Mater., 1986, 54-57: 570
[35] Rao X L, Niu E, Hu B P.Effects of cerium on permanent magnetic properties of sintered Nd-Fe-B magnets[J]. Mater. China, 2017, 36(1): 63(饶晓雷, 钮萼, 胡伯平. Ce对烧结钕铁硼磁体永磁性的影响[J]. 中国材料进展, 2017, 36(1): 63)
[36] Yan C J.Study on microstructure, properties and stability of Ce-Fe-B permanent magnetic materials [D]. Beijing: University of Chinese Academy of Sciences, 2014(严长江. Ce-Fe-B永磁材料的微观结构、性能和稳定性研究 [D]. 北京: 中国科学院大学, 2014)
[37] Alam A, Khan M, McCallum R W, et al. Site-preference and valency for rare-earth sites in (R-Ce)2Fe14B magnets[J]. Appl. Phys. Lett., 2013, 102: 042402
[38] Mo W J, Zhang L T, Liu Q Z, et al.Dependence of the crystal structure of the Nd-rich phase on oxygen content in an Nd-Fe-B sintered magnet[J]. Sci. Mater., 2008, 59: 179
[39] Zhang Y J, Ma T Y, Jin J Y, et al.Effects of REFe2 on microstructure and magnetic properties of Nd-Ce-Fe-B sintered magnets[J]. Acta Mater., 2017, 128: 22
[1] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.
[2] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[3] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.
[4] 张文奇, 朱海红, 胡志恒, 曾晓雁. AlSi10Mg的激光选区熔化成形研究[J]. 金属学报, 2017, 53(8): 918-926.
[5] 李细锋, 陈楠楠, 李佼佼, 何雪婷, 刘红兵, 郑兴伟, 陈军. 温度与应变速率对Invar 36合金变形行为的影响[J]. 金属学报, 2017, 53(8): 968-974.
[6] 郭廷彪, 李琦, 王晨, 张锋, 贾智. 单晶Cu等通道转角挤压A路径形变特征及力学性能[J]. 金属学报, 2017, 53(8): 991-1000.
[7] 刘晓云,王文广,王东,肖伯律,倪丁瑞,陈礼清,马宗义. 片层石墨尺寸对片层石墨/Al复合材料的强度和热导率的影响[J]. 金属学报, 2017, 53(7): 869-878.
[8] 杨建海,张玉祥,葛利玲,程晓,陈家照,高杨. 焊前混合表面纳米化对2A14铝合金搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2017, 53(7): 842-850.
[9] 张洪伟,秦学智,李小武,周兰章. 一种高硼定向凝固合金的初熔行为及其对力学性能的影响[J]. 金属学报, 2017, 53(6): 684-694.
[10] 孙磊,陈明和,张亮,杨帆. Sn-Ag-Cu钎料焊接显微组织演化和性能研究[J]. 金属学报, 2017, 53(5): 615-621.
[11] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
[12] 刘丰刚,林鑫,宋衎,宋梦华,韩一帆,黄卫东. 激光修复300M钢的组织及力学性能研究[J]. 金属学报, 2017, 53(3): 325-334.
[13] 康举,梁苏莹,吴爱萍,李权,王国庆. 2219铝合金搅拌摩擦焊中的局部液化现象及对接头力学性能的影响[J]. 金属学报, 2017, 53(3): 358-368.
[14] 郑浩然, 陈民芳, 李祯, 由臣, 刘德宝. MgO改性HA对Mg-Zn-Zr/m-HA复合材料组织及性能的影响[J]. 金属学报, 2017, 53(10): 1364-1376.
[15] 彭聪, 张书源, 任玲, 杨柯. 冷却速率对含Cu钛合金显微组织和性能的影响[J]. 金属学报, 2017, 53(10): 1377-1384.