Please wait a minute...
金属学报  2017, Vol. 53 Issue (4): 415-422    DOI: 10.11900/0412.1961.2016.00424
  本期目录 | 过刊浏览 |
TC16钛合金辊模拉丝过程中的显微组织和力学性能
张志强,董利民(),关少轩,杨锐
中国科学院金属研究所 沈阳 110016
Microstructure and Mechanical Properties of TC16 Titanium Alloy by Room Temperature Roller Die Drawing
Zhiqiang ZHANG,Limin DONG(),Shaoxuan GUAN,Rui YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
Zhiqiang ZHANG, Limin DONG, Shaoxuan GUAN, Rui YANG. Microstructure and Mechanical Properties of TC16 Titanium Alloy by Room Temperature Roller Die Drawing[J]. Acta Metall Sin, 2017, 53(4): 415-422.

全文: PDF(5376 KB)   HTML
  
摘要: 

利用XRD、SEM和TEM等手段分析了TC16钛合金辊模拉丝变形过程中的相组成和显微组织的变化情况,并对不同应变的辊模拉丝变形丝材进行了室温拉伸性能与显微硬度测试。结果表明,在辊模拉丝变形过程中,TC16钛合金丝材主要由α相和β相组成,部分β相发生应力诱发α''马氏体相变;随着辊模拉丝真应变的增加,TC16钛合金丝材的显微组织明显细化,当真应变达到2.14时,横截面和纵截面中的α相和β相纤维状组织厚度均约为0.3 μm,两相衍射斑点已经近似环状,表明两相显微组织也明显细化;随着辊模拉丝真应变的增加,TC16钛合金丝材的抗拉强度和显微硬度大幅提高,当真应变达到2.14时,TC16钛合金丝材的显微硬度由初始的266 HV提高到365 HV。

关键词 TC16钛合金辊模拉丝显微组织力学性能晶粒细化    
Abstract

Grain refinement is a challenging topic to improve mechanical properties of metallic materials, especially for titanium alloys which show great potential in aerospace and medical implants areas due to the low density and good corrosion resistance. However, severe plastic deformation (SPD) technologies which have been commonly used in laboratory in smaller scale are difficult to be realized in industrial. Considerable researches are therefore paying attention to the development of new technologies for improvement of grain refinement at relatively lower strains. In this work, the dual phase TC16 titanium alloy showing excellent room temperature ductility was investigated with emphasis on the feasibility of producing ultrafine grains by roller die drawing at room temperature. The techniques of XRD, SEM, TEM, Vickers hardness test and tensile test were employed to analyze the phase constitutes, microstructure evolutions and preliminary mechanical properties of the alloy deformed at different conditions. Results reveal that TC16 titanium alloy mainly consists of α and β phases after roller die drawing at room temperature, and a small quantity of stress-induced α" martensite can be additionally identified inside β grains. The grain sizes of α phase and β phase decrease with strain increasing, which result to enhanced tensile strength and Vickers hardness. Indeed, the fibrous morphology of both α phase and β phase with 0.3 μm in thickness and a high value of 365 HV in Vickers hardness were revealed at the applied true strain of 2.14. Ultra-fine grains evidenced by a near-ring SAED spots were therefore achieved in the present case.

Key wordsTC16 titanium alloy    roller die drawing    microstructure    mechanical property    grain refinement
收稿日期: 2016-09-21     
基金资助:辽宁省博士科研启动基金项目No.20141143
图1  不同真应变的TC16钛合金丝材纵截面的XRD谱
图2  真应变为1.05的TC16钛合金丝材纵截面55°~58°衍射峰的XRD谱分峰结果
图3  不同真应变的TC16钛合金丝材横截面和纵截面显微组织的SEM像
图4  不同真应变的TC16钛合金丝材横截面上α相尺寸和纵截面上α相长宽比的变化
图5  真应变2.14的TC16钛合金丝材横截面和纵截面的TEM像和选区电子衍射图
图6  真应变对TC16钛合金丝材室温拉伸性能的影响
图7  不同真应变的TC16钛合金丝材纵截面显微硬度
[1] Terada D, Inoue S, Tsuji N.Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process[J]. J. Mater. Sci., 2007, 42: 1673
[2] Gunderov D V, Polyakov A V, Semenova I P, et al.Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing[J]. Mater. Sci. Eng., 2013, A562: 128
[3] Mishnaevsky L Jr, Levashov E, Valiev R Z, et al.Nanostructured titanium-based materials for medical implants: Modeling and development[J]. Mater. Sci. Eng., 2014, R81: 1
[4] Sabirov I, Perez-Prado M T, Molina-Aldareguia J M, et al. Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route[J]. Scr. Mater., 2011, 64: 69
[5] Stolyarov V V, Zhu Y T, Lowe T C, et al.A two step SPD processing of ultrafine-grained titanium[J]. Nanostruct. Mater., 1999, 11: 947
[6] Li Z M, Fu L M, Fu B, et al.Effects of annealing on microstructure and mechanical properties of nano-grained titanium produced by combination of asymmetric and symmetric rolling[J]. Mater. Sci. Eng., 2012, A558: 309
[7] Yapici G G, Karaman I, Luo Z P.Mechanical twinning and texture evolution in severely deformed Ti-6Al-4V at high temperature[J]. Acta Mater., 2006, 54: 3755
[8] Saitova L R, H?ppel H W, G?ken M, et al.Fatigue behavior of ultrafine-grained Ti-6Al-4V ‘ELI’ alloy for medical applications[J]. Mater. Sci. Eng., 2009, A503: 145
[9] Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J]. Prog. Mater. Sci., 2000, 45: 103
[10] Wang Y C, Longdon T G.Effect of heat treatment on microstructure and microhardness evolution in a Ti-6Al-4V alloy processed by high-pressure torsion[J]. J. Mater. Sci., 2013, 48: 4646
[11] Wang Y C, Longdon T G.Influence of phase volume fractions on the processing of a Ti-6Al-4V alloy by high-pressure torsion[J]. Mater. Sci. Eng., 2013, A559: 861
[12] Ko Y G, Jung W S, Shin D H, et al.Effects of temperature and initial microstructure on the equal channel angular pressing of Ti-6Al-4V alloy[J]. Scr. Mater., 2003, 48: 197
[13] Yilmazer H, Niinomi M, Nakai M, et al.Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion[J]. Mater. Sci. Eng., 2013, C33: 2499
[14] Yilmazer H, Niinomi M, Cho K, et al.Microstructural evolution of precipitation-hardened β-type titanium alloy through high-pressure torsion[J]. Acta Mater., 2014, 80: 172
[15] Cojocaru V D, Raducanu D, Gordin D M, et al.Texture evolution during ARB (Accumulative Roll Bonding) processing of Ti-10Zr-5Nb-5Ta alloy[J]. J. Alloys Compd., 2013, 546: 260
[16] Lin Z J, Wang L Q, Xue X B, et al.Microstructure evolution and mechanical properties of a Ti-35Nb-3Zr-2Ta biomedical alloy processed by equal channel angular pressing (ECAP)[J]. Mater. Sci. Eng., 2013, C33: 4551
[17] Kent D, Wang G, Yu Z T, et al.Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique[J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 405
[18] Semiatin S L, Bieler T R.The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure[J]. Acta Mater., 2001, 49: 3565
[19] Zherebtsov S, Murzinova M, Salishchev G, et al.Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing[J]. Acta Mater., 2011, 59: 4138
[20] Park C H, Kim J H, Yeom J T, et al.Formation of a submicrocrystalline structure in a two-phase titanium alloy without severe plastic deformation[J]. Scr. Mater., 2013, 68: 996
[21] Matsumoto H, Bin L, Lee S H, et al.Frequent occurrence of discontinuous dynamic recrystallization in Ti-6Al-4V alloy with α' martensite starting microstructure[J]. Metall. Mater. Trans., 2013, 44A: 3245
[22] Zhang Z Q, Dong L M, Yang Y, et al.Microstructure refinement of a dual phase titanium alloy by severe room temperature compression[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2604
[23] Pilarczyk J W, Dyja H, Golis B, et al.Effect of roller die drawing on structure, texture and other properties of high carbon steel wires[J]. Met. Mater., 1998, 4: 727
[24] Pilarczyk J W, van Houtte P, Aernoudt E. Effect of hydrodynamic and roller die drawing on the texture of high carbon steel wires[J]. Mater. Sci. Eng., 1995, A197: 97
[25] Asakawa M, Shigeta H, Shimizu A, et al.Experiments on and finite element analyses of the tilting of fine steel wire in roller die drawing[J]. ISIJ Int., 2013, 53: 1850
[26] Nam W J, Bae C M.Microstructural evolution and its relation to mechanical properties in a drawn dual-phase steel[J]. J. Mater. Sci., 1999, 34: 5661
[27] Xu Y F, Yi D Q, Liu H Q, et al.Effects of cold deformation on microstructure, texture evolution and mechanical properties of Ti-Nb-Ta-Zr-Fe alloy for biomedical applications[J]. Mater. Sci. Eng., 2012, A547: 64
[28] Zhang H Y, Zeng W D, Wang G, et al.On the deformation mechanisms and strain rate sensitivity of a metastable β Ti-Nb alloy[J]. Scr. Mater., 2015, 107: 34
[29] Moiseev V N.High-strength titanium alloy VT16 for manufacturing fasteners by the method of cold deformation[J]. Met. Sci. Heat Treat., 2001, 43: 73
[30] Kim H Y, Ikehara Y, Kim J I, et al.Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys[J]. Acta Mater., 2006, 54: 2419
[31] Cahn R W, Haasen P.Physical Metallurgy[M]. 4th Ed., Amsterdam: Elsevier Science, 1996: 1529
[32] Ankem S, Margolin H, Greene C A, et al.Mechanical properties of alloys consisting of two ductile phases[J]. Prog. Mater. Sci., 2006, 51: 632
[33] Ankem S, Margolin H.The role of elastic interaction stresses on the onset of plastic flow for oriented two ductile phase structures[J]. Metall. Trans., 1980, 11A: 963
[34] Greene C A, Ankem S.Modelling of elastic interaction stresses in two-phase materials by FEM[J]. Mater. Sci. Eng., 1995, A202: 103
[35] Wyatt Z, Ankem S.The effect of metastability on room temperature deformation behavior of β and α+β titanium alloys[J]. J. Mater. Sci., 2010, 45: 5022
[36] Langdon T G.Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement[J]. Acta Mater., 2013, 61: 7035
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.