Please wait a minute...
金属学报  2017, Vol. 53 Issue (4): 415-422    DOI: 10.11900/0412.1961.2016.00424
  本期目录 | 过刊浏览 |
中国科学院金属研究所 沈阳 110016
Microstructure and Mechanical Properties of TC16 Titanium Alloy by Room Temperature Roller Die Drawing
Zhiqiang ZHANG,Limin DONG(),Shaoxuan GUAN,Rui YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(5376 KB)   HTML

利用XRD、SEM和TEM等手段分析了TC16钛合金辊模拉丝变形过程中的相组成和显微组织的变化情况,并对不同应变的辊模拉丝变形丝材进行了室温拉伸性能与显微硬度测试。结果表明,在辊模拉丝变形过程中,TC16钛合金丝材主要由α相和β相组成,部分β相发生应力诱发α''马氏体相变;随着辊模拉丝真应变的增加,TC16钛合金丝材的显微组织明显细化,当真应变达到2.14时,横截面和纵截面中的α相和β相纤维状组织厚度均约为0.3 μm,两相衍射斑点已经近似环状,表明两相显微组织也明显细化;随着辊模拉丝真应变的增加,TC16钛合金丝材的抗拉强度和显微硬度大幅提高,当真应变达到2.14时,TC16钛合金丝材的显微硬度由初始的266 HV提高到365 HV。

关键词 TC16钛合金辊模拉丝显微组织力学性能晶粒细化    

Grain refinement is a challenging topic to improve mechanical properties of metallic materials, especially for titanium alloys which show great potential in aerospace and medical implants areas due to the low density and good corrosion resistance. However, severe plastic deformation (SPD) technologies which have been commonly used in laboratory in smaller scale are difficult to be realized in industrial. Considerable researches are therefore paying attention to the development of new technologies for improvement of grain refinement at relatively lower strains. In this work, the dual phase TC16 titanium alloy showing excellent room temperature ductility was investigated with emphasis on the feasibility of producing ultrafine grains by roller die drawing at room temperature. The techniques of XRD, SEM, TEM, Vickers hardness test and tensile test were employed to analyze the phase constitutes, microstructure evolutions and preliminary mechanical properties of the alloy deformed at different conditions. Results reveal that TC16 titanium alloy mainly consists of α and β phases after roller die drawing at room temperature, and a small quantity of stress-induced α" martensite can be additionally identified inside β grains. The grain sizes of α phase and β phase decrease with strain increasing, which result to enhanced tensile strength and Vickers hardness. Indeed, the fibrous morphology of both α phase and β phase with 0.3 μm in thickness and a high value of 365 HV in Vickers hardness were revealed at the applied true strain of 2.14. Ultra-fine grains evidenced by a near-ring SAED spots were therefore achieved in the present case.

Key wordsTC16 titanium alloy    roller die drawing    microstructure    mechanical property    grain refinement
收稿日期: 2016-09-21      出版日期: 2016-12-23


张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
Zhiqiang ZHANG,Limin DONG,Shaoxuan GUAN,Rui YANG. Microstructure and Mechanical Properties of TC16 Titanium Alloy by Room Temperature Roller Die Drawing. Acta Metall Sin, 2017, 53(4): 415-422.

链接本文:      或

图1  不同真应变的TC16钛合金丝材纵截面的XRD谱
图2  真应变为1.05的TC16钛合金丝材纵截面55°~58°衍射峰的XRD谱分峰结果
图3  不同真应变的TC16钛合金丝材横截面和纵截面显微组织的SEM像
图4  不同真应变的TC16钛合金丝材横截面上α相尺寸和纵截面上α相长宽比的变化
图5  真应变2.14的TC16钛合金丝材横截面和纵截面的TEM像和选区电子衍射图
图6  真应变对TC16钛合金丝材室温拉伸性能的影响
图7  不同真应变的TC16钛合金丝材纵截面显微硬度
[1] Terada D, Inoue S, Tsuji N.Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process[J]. J. Mater. Sci., 2007, 42: 1673
[2] Gunderov D V, Polyakov A V, Semenova I P, et al.Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing[J]. Mater. Sci. Eng., 2013, A562: 128
[3] Mishnaevsky L Jr, Levashov E, Valiev R Z, et al.Nanostructured titanium-based materials for medical implants: Modeling and development[J]. Mater. Sci. Eng., 2014, R81: 1
[4] Sabirov I, Perez-Prado M T, Molina-Aldareguia J M, et al. Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route[J]. Scr. Mater., 2011, 64: 69
[5] Stolyarov V V, Zhu Y T, Lowe T C, et al.A two step SPD processing of ultrafine-grained titanium[J]. Nanostruct. Mater., 1999, 11: 947
[6] Li Z M, Fu L M, Fu B, et al.Effects of annealing on microstructure and mechanical properties of nano-grained titanium produced by combination of asymmetric and symmetric rolling[J]. Mater. Sci. Eng., 2012, A558: 309
[7] Yapici G G, Karaman I, Luo Z P.Mechanical twinning and texture evolution in severely deformed Ti-6Al-4V at high temperature[J]. Acta Mater., 2006, 54: 3755
[8] Saitova L R, H?ppel H W, G?ken M, et al.Fatigue behavior of ultrafine-grained Ti-6Al-4V ‘ELI’ alloy for medical applications[J]. Mater. Sci. Eng., 2009, A503: 145
[9] Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J]. Prog. Mater. Sci., 2000, 45: 103
[10] Wang Y C, Longdon T G.Effect of heat treatment on microstructure and microhardness evolution in a Ti-6Al-4V alloy processed by high-pressure torsion[J]. J. Mater. Sci., 2013, 48: 4646
[11] Wang Y C, Longdon T G.Influence of phase volume fractions on the processing of a Ti-6Al-4V alloy by high-pressure torsion[J]. Mater. Sci. Eng., 2013, A559: 861
[12] Ko Y G, Jung W S, Shin D H, et al.Effects of temperature and initial microstructure on the equal channel angular pressing of Ti-6Al-4V alloy[J]. Scr. Mater., 2003, 48: 197
[13] Yilmazer H, Niinomi M, Nakai M, et al.Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion[J]. Mater. Sci. Eng., 2013, C33: 2499
[14] Yilmazer H, Niinomi M, Cho K, et al.Microstructural evolution of precipitation-hardened β-type titanium alloy through high-pressure torsion[J]. Acta Mater., 2014, 80: 172
[15] Cojocaru V D, Raducanu D, Gordin D M, et al.Texture evolution during ARB (Accumulative Roll Bonding) processing of Ti-10Zr-5Nb-5Ta alloy[J]. J. Alloys Compd., 2013, 546: 260
[16] Lin Z J, Wang L Q, Xue X B, et al.Microstructure evolution and mechanical properties of a Ti-35Nb-3Zr-2Ta biomedical alloy processed by equal channel angular pressing (ECAP)[J]. Mater. Sci. Eng., 2013, C33: 4551
[17] Kent D, Wang G, Yu Z T, et al.Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique[J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 405
[18] Semiatin S L, Bieler T R.The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure[J]. Acta Mater., 2001, 49: 3565
[19] Zherebtsov S, Murzinova M, Salishchev G, et al.Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing[J]. Acta Mater., 2011, 59: 4138
[20] Park C H, Kim J H, Yeom J T, et al.Formation of a submicrocrystalline structure in a two-phase titanium alloy without severe plastic deformation[J]. Scr. Mater., 2013, 68: 996
[21] Matsumoto H, Bin L, Lee S H, et al.Frequent occurrence of discontinuous dynamic recrystallization in Ti-6Al-4V alloy with α' martensite starting microstructure[J]. Metall. Mater. Trans., 2013, 44A: 3245
[22] Zhang Z Q, Dong L M, Yang Y, et al.Microstructure refinement of a dual phase titanium alloy by severe room temperature compression[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2604
[23] Pilarczyk J W, Dyja H, Golis B, et al.Effect of roller die drawing on structure, texture and other properties of high carbon steel wires[J]. Met. Mater., 1998, 4: 727
[24] Pilarczyk J W, van Houtte P, Aernoudt E. Effect of hydrodynamic and roller die drawing on the texture of high carbon steel wires[J]. Mater. Sci. Eng., 1995, A197: 97
[25] Asakawa M, Shigeta H, Shimizu A, et al.Experiments on and finite element analyses of the tilting of fine steel wire in roller die drawing[J]. ISIJ Int., 2013, 53: 1850
[26] Nam W J, Bae C M.Microstructural evolution and its relation to mechanical properties in a drawn dual-phase steel[J]. J. Mater. Sci., 1999, 34: 5661
[27] Xu Y F, Yi D Q, Liu H Q, et al.Effects of cold deformation on microstructure, texture evolution and mechanical properties of Ti-Nb-Ta-Zr-Fe alloy for biomedical applications[J]. Mater. Sci. Eng., 2012, A547: 64
[28] Zhang H Y, Zeng W D, Wang G, et al.On the deformation mechanisms and strain rate sensitivity of a metastable β Ti-Nb alloy[J]. Scr. Mater., 2015, 107: 34
[29] Moiseev V N.High-strength titanium alloy VT16 for manufacturing fasteners by the method of cold deformation[J]. Met. Sci. Heat Treat., 2001, 43: 73
[30] Kim H Y, Ikehara Y, Kim J I, et al.Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys[J]. Acta Mater., 2006, 54: 2419
[31] Cahn R W, Haasen P.Physical Metallurgy[M]. 4th Ed., Amsterdam: Elsevier Science, 1996: 1529
[32] Ankem S, Margolin H, Greene C A, et al.Mechanical properties of alloys consisting of two ductile phases[J]. Prog. Mater. Sci., 2006, 51: 632
[33] Ankem S, Margolin H.The role of elastic interaction stresses on the onset of plastic flow for oriented two ductile phase structures[J]. Metall. Trans., 1980, 11A: 963
[34] Greene C A, Ankem S.Modelling of elastic interaction stresses in two-phase materials by FEM[J]. Mater. Sci. Eng., 1995, A202: 103
[35] Wyatt Z, Ankem S.The effect of metastability on room temperature deformation behavior of β and α+β titanium alloys[J]. J. Mater. Sci., 2010, 45: 5022
[36] Langdon T G.Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement[J]. Acta Mater., 2013, 61: 7035
[1] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[2] 李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.
[3] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[4] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
[5] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[6] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[7] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[8] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[9] 张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
[10] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[11] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[12] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[13] 吴玉程. 面向等离子体W材料改善韧性的方法与机制[J]. 金属学报, 2019, 55(2): 171-180.
[14] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.
[15] 闵小华, 向力, 李明佳, 姚凯, 江村聪, 程从前, 土谷浩一. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响[J]. 金属学报, 2018, 54(9): 1262-1272.