Please wait a minute...
金属学报  2014, Vol. 50 Issue (12): 1498-1504    DOI: 10.11900/0412.1961.2014.00310
  论文 本期目录 | 过刊浏览 |
温度对Zr-45Ti-5Al-3V合金准静态力学性能的影响
刘丁铭1, 2, 张波3, 王杰1, 王爱民1, 王沿东2, 张海峰1, 胡壮麒1
1 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016; 2 东北大学材料与冶金学院, 沈阳 110819; 3 沈阳航空航天大学材料科学与工程学院, 沈阳 110136
INFLUENCE OF TEMPERATURE ON QUASI-STATIC MECHANICAL PROPERTIES OF Zr-45Ti-5Al-3V ALLOY
LIU Dingming1, 2, ZHANG Bo3, WANG Jie1, WANG Aimin1, WANG Yandong2, ZHANG Haifeng1, HU Zhuangqi1
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016; 2 School of Materials and Metallurgy, Northeastern University, Shenyang 110819; 3 Department of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136
全文: PDF(8161 KB)   HTML
摘要: 在-100~200 ℃范围内不同应变速率(10-4, 10-3和10-2 s-1)下利用准静态拉伸和压缩实验研究了温度对Zr-45Ti-5Al-3V合金力学性能的影响. 结果表明, 在拉伸条件下, Zr-45Ti-5Al-3V合金具有较高的屈服强度和抗拉强度, 室温时其屈服强度超过1355 MPa, 但延伸率较小. 随着温度的升高, 合金的屈服强度和抗拉强度均下降, 而塑性变形量则上升. 在压缩条件下, 温度对屈服强度的影响与拉伸时一致, 而塑性变形量和断裂强度均在室温时最高, 其他温度下变化规律与拉伸时一致. 应变速率对合金的力学性能影响不大.
关键词 Zr-45Ti-5Al-3V合金力学性能温度应变速率    
Abstract:Zr alloys are widely used in pressurized-water reactors as fuel cladding materials due to their low neutron absorption cross section and excellent radiation resistance. Aside from the aforementioned properties, Zr alloys have high strength, relative low density and many other excellent physical and chemical properties that make them promising structural materials used in the aerospace environment. Zr-45Ti-5Al-3V alloy is a high strength zirconium alloy which is newly developed for use in aerospace environment. The temperature in space environment can change from -100 ℃ to more than 100 ℃, so it is necessary to study the mechanical behavior of Zr-45Ti-5Al-3V alloy under different temperatures. In this work, mechanical properties of Zr-45Ti-5Al-3V alloy under different temperatures (-100, 25, 100 and 200 ℃) and strain rates (10-4, 10-3 and 10-2 s-1) were investigated. The microstructure of the Zr-45Ti-5Al-3V alloy is characterized by SEM and XRD. It is shown that the alloy is comprised of two phases: a lath-like a phase with hcp structure is distributed uniformly in the matrix comprised of a b phase with bcc structure. Quasi-static mechanical properties of Zr-45Ti-5Al-3V alloy were studied in temperature range of -100~200 ℃ under various strain rates (10-4, 10-3 and 10-2 s-1) using the Instron 5528 electric universal material testing machine. The results showed that the alloy possessed yield strength of more than 1355 MPa at room temperature and higher fracture strength in tensile test, but the elongation was small. With increasing temperature, the yield strength and the fracture strength of the alloy decreased, while the amount of plastic deformation increased. Under the condition of compression test, the yield strength also decreased with temperature increasing, while the plasticity and fracture strength reached maximum at room temperature. The influence of strain rate on the mechanical properties of the alloy was not significant under both tensile and compression tests.
Key wordsZr-45Ti-5Al-3V alloy    mechanical property    temperature    strain rate
     出版日期: 2014-12-25
基金资助:*国家重点基础研究发展计划资助项目2010CB731602
Corresponding author: Correspondent: WANG Aimin, professor, Tel: (024)23971782, E-mail: amwang@imr.ac.cn   
作者简介: 刘丁铭, 男, 1988年生, 博士生

引用本文:

刘丁铭, 张波, 王杰, 王爱民, 王沿东, 张海峰, 胡壮麒. 温度对Zr-45Ti-5Al-3V合金准静态力学性能的影响[J]. 金属学报, 2014, 50(12): 1498-1504.
LIU Dingming, ZHANG Bo, WANG Jie, WANG Aimin, WANG Yandong, ZHANG Haifeng, HU Zhuangqi. INFLUENCE OF TEMPERATURE ON QUASI-STATIC MECHANICAL PROPERTIES OF Zr-45Ti-5Al-3V ALLOY. Acta Metall Sin, 2014, 50(12): 1498-1504.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2014.00310      或      http://www.ams.org.cn/CN/Y2014/V50/I12/1498

图1  Zr-45Ti-5Al-3V合金的XRD谱和SEM像
图2  Zr-45Ti-5Al-3V合金在室温时不同应变速率ε?下的真应力-应变曲线
图3  室温下ε?=10-4 s-1时的拉伸断口形貌
图4  室温下不同ε?时的压缩断口形貌
图5  Zr-45Ti-5Al-3V合金的抗拉强度、屈服强度和延伸率随温度的变化
图6  ε?=10-4 s-1时Zr-45Ti-5Al-3V合金在不同温度下的拉伸断口形貌
图7  ε? =10-3 s-1时Zr-45Ti-5Al-3V合金在不同温度下压缩的应力-应变曲线
图8  Zr-45Ti-5Al-3V合金在不同温度下的压缩断口形貌
[1] Wang S H, Yang D Z, He S Y, Lv G. Mater Sci Technol, 2004; 12(6): 579 (王淑花, 杨德庄, 何世禹, 吕 钢. 材料科学与工艺, 2004; 12(6): 579)
[2] Li X, Wang L, Yu X M. Mater Sci Eng, 2003; A33: 2987
[3] Qian J, Zhu Y L, Feng Y Y, Li F B. The Basic of Space Technology. Beijing: Science Press, 1986: 520 (钱 骥, 朱毅麟, 冯英远, 李凡本. 空间技术基础. 北京: 科学出版社, 1986: 520)
[4] Zhao W J, Zhou B X, Miao Z, Peng Q, Jiang Y R, Jiang H M, Pang H. At Energy Sci Technol, 2005; 39(Sl): 2 (赵文金, 周邦新, 苗 志, 彭 倩, 蒋有荣, 蒋宏曼, 庞 华. 原子能科学技术, 2005; 39(增刊): 2
[5] Saintoyant L, Legras L, Brchet Y. Scr Mater, 2011; 64: 418
[6] Farhat Z N. Mater Sci Eng, 2008; A474: 96
[7] Kondo R, Suyalatu, Tsutsumi Y, Doi H, Nomura N, Hanawa T. Mater Sci Eng, 2011; C31: 900
[8] Sun C, Tan J, Ying S H, Li C. Rare Met Mater Eng, 2008; 37(4): 584 (孙 超, 谭 军, 应诗浩, 李 聪. 稀有金属材料与工程, 2008; 37(4): 584)
[9] Liang S X, Ma M Z, Jing R, Zhou Y K, Jing Q, Liu R P. Mater Sci Eng, 2012; A539: 42
[10] Liang S X, Ma M Z, Jing R, Zhang X Y, Liu R P. Mater Sci Eng, 2012; A532: 1
[11] Liang S X, Yin L X, Che H W, Jing R, Zhou Y K, Ma M Z, Liu R P. Mater Des, 2013; 52: 246
[12] Li Y, Zhang L, Zhu Z W, Li H, Wang A M, Zhang H F. Acta Metall Sin, 2014; 50: 19 (李 烨, 张 龙, 朱正旺, 李 宏, 王爱民, 张海峰. 金属学报, 2014; 50: 19)
[13] Liang S X, Ma M Z, Jing R, Tan C L, Liu R P. Mater Sci Eng, 2012; A541: 67
[14] Wang J, Zhang H W, Wang A M, Li H, Fu H M, Zhu Z W, Zhang H F. Acta Metall Sin, 2012; 48: 636 (王 杰, 张宏伟, 王爱民, 李 宏, 付华萌, 朱正旺, 张海峰. 金属学报, 2012; 48: 636)
[15] Liang S X, Yin L X, Jing R, Zhang X Y, Ma M Z, Liu R P. J Mater Res, 2013; 28: 2715
[16] Tan Y B, Liu W C, Yuan H, Liu R P, Zhang X Y. Metall Mater Trans, 2013; 44A: 5284
[17] Liang S X, Yin L X, Che H W, Tan C L, Jing R, Zhou Y K, Ma M Z, Liu R P. Mater Des, 2014; 55: 64
[18] Tan Y B, Yang L H, Tian C, Liu W C, Liu R P, Zhang X Y. Mater Sci Eng, 2014; A597: 171
[19] Tan Y B, Yang L H, Tian C, Liu R P, Zhang X Y, Liu W C. Mater Sci Eng, 2013; A577: 218
[20] Zhan Y Z, Zhang G D. Aerospace Mater Technol, 2003; (1): 1 (湛永钟, 张国定. 宇航材料工艺, 2003; (1): 1)
[21] Cui Z Q, Tan Y C. Metallography and Heat Treatment. Beijing: Mechanical Industry Press, 2007: 186 (崔忠圻, 覃耀春. 金属学与热处理. 北京: 机械工业出版社, 2007: 186)
[22] Xu L, Guo R P, Bai C G, Lei J F, Yang R. J Mater Sci Technol, 2014, doi:10.1016/j.jmst.2014.04.011
[23] Venkatesh B D, Chen D L, Bhole S D. Mater Sci Eng, 2009; A506: 117
[24] Singh G, Sen I, Gopinath K, Ramamurty U. Mater Sci Eng, 2012; A540: 142
[25] Feng D. Physics of Metals. Beijing: China Machine Press, 1999: 354 (冯 端. 金属物理学. 北京: 中国机械出版社, 1999: 354)
[1] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
[2] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[3] 李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.
[4] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[5] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
[6] 张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
[7] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[8] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[9] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[10] 何东昱,刘玉欣. 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3铁电薄膜90°分步畴转与温度效应[J]. 金属学报, 2019, 55(3): 325-331.
[11] 王瑾, 余黎明, 李冲, 黄远, 李会军, 刘永长. 不同温度对含与不含位错α-Fe中He原子行为的影响[J]. 金属学报, 2019, 55(2): 274-280.
[12] 吴玉程. 面向等离子体W材料改善韧性的方法与机制[J]. 金属学报, 2019, 55(2): 171-180.
[13] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.
[14] 闵小华, 向力, 李明佳, 姚凯, 江村聪, 程从前, 土谷浩一. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响[J]. 金属学报, 2018, 54(9): 1262-1272.
[15] 屈少鹏, 程柏璋, 董丽华, 尹衍升, 杨丽景. 2205钢在模拟深海热液区中的腐蚀行为[J]. 金属学报, 2018, 54(8): 1094-1104.