Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (11): 1183-1187    DOI:
Current Issue | Archive | Adv Search |
MECHANICAL PROPERTIES AND CRYSTALLITE ORIENTATION DISTRIBUTION OF SiC_p REINFORCED ALUMINIUM MATRIX COMPOSITE SHEETS
CHEN Liqing;L U Yuxiong;BI Jing (Institute of Metal Research;Chinese Academy of Sciences;Shenyang 110015)
Cite this article: 

CHEN Liqing;L U Yuxiong;BI Jing (Institute of Metal Research;Chinese Academy of Sciences;Shenyang 110015). MECHANICAL PROPERTIES AND CRYSTALLITE ORIENTATION DISTRIBUTION OF SiC_p REINFORCED ALUMINIUM MATRIX COMPOSITE SHEETS. Acta Metall Sin, 1998, 34(11): 1183-1187.

Download:  PDF(489KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The mechanical properties of an aluminium alloy sheet (Al-3.OCu-1.5Mg-0.4Mn)reinforced by 15% silicon carbide particulate via powder metallurgy technique were investigated under hot-and cold-rolling conditions,and the crystallite orientation distribution in these sheets were also determined by ODF analysis.The hot-rolled sheet composite exhibits much higher ultimate tensile strength and elongation comparing to those of the cold-rolled one. However, the cold-rolled sheet has an elevated 0.2% yield strength.The texture of the cold-rolled sheet composite consists of three weak components, i.e. shear component {001}<110> and two other typical fcc components {110}<112> and {3 3 14}<773>, while the hot rolling texture is almost random. The textured microstructure has an effect on the 0.2% yield strength and do not have any influence on the ultimate tensile strength.The decrease in ultimate tensile strength of the cold-rolled sheet is attributed mainly to the micro-damages produced during cold rolling.
Key words:  metal-matrix composite      powder metallurgy      mechanical property      texture     
Received:  18 November 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I11/1183

1Dayvidson D L.Metall Trans,1991;22A:113
2Llovd D J. Int Mater Rev, 1994; 39: 1
3 Beck Tan N C, Aikin Jr R M, Briber R M. Metall Materl Trans, 1994: 25A:2461
4 Felli F,Brotzu A.DiRusso E,Pinna F. Mater Sol Technol,1997:13:420
5 Singh P M,Lewandowski J J. Metall Trans,1993:24A:2531
6Doel T J A. Bowen P Mater Set Eng, 1996; 12:586
7 DoelT J A, Loretto M H,Bowen P Composites,1993;24:270
8 Wang B,Janowski G M,Patterson B R.Metall Mater Trans,1995;26A:2457
9 Liang Z D, Xu J Z,Wang F In:Nagashima S ed;Proc of 6th Int Coof on Textures of Materials.Tokyo, ISIJ, 1986:2:1259
10 Arsenault R J,Shi N.Mater Sci Eng,1986; 81:175
11 Nardone V C,Prewo K M. Scr Metall, 1986; 20: 43
12 Lee C S,Duggan B J, Metall Trans.1991;22A:2637
13 Choi C H,Kwon J W, Oh K H,Lee D N.Acta Mater,1997:45:511
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[13] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[14] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!