Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (2): 216-220    DOI:
Current Issue | Archive | Adv Search |
STUDY OF HYPERFINE-FIELD ON NEW HIGH STRENGTH HIGH FRACTURE TOUGHNESS STEEL G99
GENG Ping;ZENG Meiguang;QIAN Cunfu;CHAO Yuesheng (Sciences College; Northeastern University; Shenyang 110006)
Cite this article: 

GENG Ping;ZENG Meiguang;QIAN Cunfu;CHAO Yuesheng (Sciences College; Northeastern University; Shenyang 110006). STUDY OF HYPERFINE-FIELD ON NEW HIGH STRENGTH HIGH FRACTURE TOUGHNESS STEEL G99. Acta Metall Sin, 1998, 34(2): 216-220.

Download:  PDF(472KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Variations of hyperfine-field with tempering temperature for high strength high fracture toughness steel G99 were studied by Mossbauer spectroscopy. The precipitation of alloy carbides was observed and analyzed by TEM and EDS. The results show that the distribution ofhyperfine-field and the quality of carbides and austenite within steel G99 vary with increasing tempering temperature. These are mainly caused by the increase of Fe atoms neighboring with Co or Ni, the decrease of Fe atoms neighboring with Cr or Mo, the solution of cementite, the precipitation of alloy carbides and the arising of reverted austenite. The important factors that the steel G99 has superior combinstion of strength and toughness are the precipitation of fine alloy carbides M2C, the arising in small amouats of reverted austenite, and well-distributed Co and Ni atoms in tempered martensite.
Key words:  Mossbauer spectrum      hyperfine-field      secondary-hardening      martensite     
Received:  18 February 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I2/216

1Garrison W M Jr, Moody N R. Metall Trans, 1987; 18A: 1257
2 Handerhan K J, Garrison W M Jr, Moody N R. Metall Trans A, 1989; 20A: 105
3 Ayer R, Machmeier P M. Metall Trans A, 1993; 24A: 1943
4凌斌,钟平,钟炳文,古宝珠.金属学报,1995;31:A209 (Ling B, Zhong P, Zhong B W, Gu B Z. Acta Metall Sin, 1995; 31: A209)
5李士著,穆斯堡尔谱学方法学与数据处理,兰州:兰州大学出版社,1990:33(Li S.Mossbauer Spectrum Methods and Data Treatment , Langhou:Lanzhou University,Press.1990:33)
6 Mathalone Z, Roy M, Pipman J.J Appl Phys, 1971; 42: 687
7苏杰.冶金工业部钢铁研究总院博士学位论文,1995 (Su J. Doctor thesis, Central Iron & Steel Research Institute, MMI, 1995)
8 Mendis E F, Andesrson L W. Phys Rev Lett, 1967; 19: 1434
9 Shirly D A, Rosenblum S S, Matthias E. Phys Rev, 1968; 170: 363
10Vincze I, Campbell I A.J Phys F: Metal Phys, 1973; 3: 647
[1] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[2] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[3] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[4] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[5] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[6] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[7] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[8] WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen. Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel[J]. 金属学报, 2021, 57(12): 1588-1594.
[9] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[10] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[11] ZHU Jian, ZHANG Zhihao, XIE Jianxin. Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study[J]. 金属学报, 2020, 56(12): 1592-1604.
[12] Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel[J]. 金属学报, 2019, 55(4): 436-444.
[13] CHEN Lei, HAO Shuo, ZOU Zongyuan, HAN Shuting, ZHANG Rongqiang, GUO Baofeng. Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. 金属学报, 2019, 55(12): 1495-1502.
[14] Kuanhui HU, Xinping MAO, Guifeng ZHOU, Jing LIU, Zhifen WANG. Effect of Si and Mn Contents on the Microstructure and Mechanical Properties of Ultra-High Strength Press Hardening Steel[J]. 金属学报, 2018, 54(8): 1105-1112.
[15] Yefei MA, Zhuman SONG, Siqian ZHANG, Lijia CHEN, Guangping ZHANG. Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens[J]. 金属学报, 2018, 54(10): 1359-1367.
No Suggested Reading articles found!