Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (4): 494-512    DOI: 10.11900/0412.1961.2019.00328
Current Issue | Archive | Adv Search |
Progress and Perspective of Ultra-High Strength Steels Having High Toughness
LUO Haiwen(),SHEN Guohui
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness. Acta Metall Sin, 2020, 56(4): 494-512.

Download:  HTML  PDF(10980KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ultra-high strength steels have been widely used in the critical engineering structures in both military and civilian applications due to the combination of ultra-high strength and excellent toughness. In this paper, firstly, the typical ultra-high strength steel grades that have been employed were introduced, and their compositions, mechanical properties, application and histories of development were summarized with the emphasis on their microstructures and strengthening/toughening mechanism; secondly, the latest progress on the emerging ultra-high strength steel grades was reviewed, including their compositions, microstructures, strengthening mechanism and mechanical properties; thirdly, the newly emerging demands on replacing the currently employed ultra-high strength steels in China were defined, including steels for low-density but ultra-strong armors, the large ball grinding mill, cutters of tunnel boring machine and high pressure fracturing pump; finally, recent research results on ultra-high strength and high-toughness medium Mn steel were presented, which overcame the trade-off of strength and toughness to a greater extent; on this basis, some suggestions were put forward for the future development of these steel grades to meet the urgent national demands.

Key words:  ultra-high strength steel      toughness      precipitation strengthening      martensite      retained austenite     
Received:  29 September 2019     
ZTFLH:  TG142  
Fund: National Natural Science Foundation of China(51831002);Foundamental Research Founds for the Central Universities(FRF-TP-18-002C2)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00328     OR     https://www.ams.org.cn/EN/Y2020/V56/I4/494

SteelCMnSiCrNiMoVCoOtherFeRef.
H130.320.20.84.75-1.10.8--Bal.[7]
12Cr-9Ni-4Mo-2Cu0.010.320.1512.28.994.02--1.95Cu+0.87Ti+0.33AlBal.[10]
HY130-10.100.740.370.534.940.53---Bal.[11]
Si-Mn-Cr-Ni-Mo0.241.51.81.00.70.350.01-0.02Ti+0.05NbBal.[12]
4340-10.40.620.290.731.770.21---Bal.[13]
4340-20.390.610.240.671.460.17---Bal.[14]
4340-C-Si0.50.61.750.71.50.2---Bal.[15]
300M0.310.011.511.443.520.250.1--Bal.[16]
H110.390.621.205.07-1.330.54--Bal.[17]
18Ni3Al4Mo0.08---184--3Al+0.8Nb+0.01BBal.[18]
AF14100.160.160.051.9910.051.01-13.08-Bal.[19]
AerMet 1000.240.010.032.9911.21.18-13.4-Bal.[20]
18Ni(250)0.004---18.314.67-8.90.58TiBal.[21]
T2500.010.10.1-183.00.51.5Ti+0.1AlBal.[22]
W2500.006---18.9---4.2W+1.15Ti+0.083AlBal.[23]
15Ni6Mo4Cu1Ti0.03---156--1.01Ti+4CuBal.[24]
14Ni3Cr3Mo1.5Ti0.0060.020.032.8814.343.24--1.52TiBal.[25]
13Co-12Cr-5.6Mo---12.135.245.6-13.20.43TiBal.[26]
PH 13-8Mo0.05--12.58.02.15--1.0AlBal.[27]
Custom4650.02--11.811.01.0--1.7TiBal.[27]
Ferrium S530.21--10.05.52.0-141W+0.3VBal.[28]
Table 1  The compositions of typical widely used ultra-high strength steels[7,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]
Fig.1  TEM[12] (a) and SEM[29] (b) images of micro-structure of the low alloyed ultra-high strength AISI4340 steel
SteelYS / MPaUTS / MPaEL / %Hardness / HBAk (20 ℃) / JRef.
HY130-189697023--[11]
4340162717928.6536-[14]
4140102511001132040[30]
4130880980--16[32]
300M170519301059520[36]
30CrMnSiNi2A1400172010-75[37]
45CrNiMo1VA17802000854331[38]
35Si2Mn2MoVA1550185011-55[39]
4061700200011-50[40]
Table 2  Mechanical properties of typical low alloyed ultra-high strength steels[11,14,30,32,36,37,38,39,40]
SteelYS / MPaUTS / MPaEL / %Hardness / HBAk (20 ℃) / JRef.
AerMet100176019932854341[20]
GC-19147016709-49[42]
AF1410152016551546961[43]
H-11167520069.657720[44]
HY1801345141316203140[44]
H-131397149311.245515.2[45]
DT3001500186011.5-58[46]
Table 3  Mechanical properties of typical secondary hardening ultra-high strength steels[20,42,43,44,45,46]
Fig.2  TEM images of carbides in Fe-Cr-Ni-Mo high-strength steel after tempering at 400 ℃ (a), 500 ℃ (b), 600 ℃ (c) and 650 ℃ (d)[47]
SteelYS / MPaUTS / MPaEL / %Hardness / HBAk (20 ℃) / JRef.
18Ni3Al4Mo194721978.2--[18]
18Ni(250)1819185412.1948135[21]
T2501500186011.548158[22]
W250178018009-25[23]
15Ni6Mo4Cu1Ti178518939.552530[24]
14Ni3Cr3Mo1.5Ti1750182013.5496-[25]
Table 4  Mechanical properties of typical ultra-high strength maraging steels[18,21,22,23,24,25]
SteelYS / MPaUTS / MPaEL / %Hardness / HBAk (20 ℃) / JKIC / (MPa·m1/2)Ref.
PH 13-8Mo15001620104551580[27]
Custom4651703177914--71[27]
Ferrium S5315511986155431870[28]
PH 17-41161119910.0531162.3-[57]
PH 15-51150124016469-90[58]
Table 5  Mechanical properties of typical precipitation hardening ultra-high strength stainless steels[27,28,57,58]
Fig.3  TEM images of the surface layers of carburized 20CrMnMoAl steel austempered at 220 ℃ for 32 h (a) and 250 ℃ for 20 h (b)[66]
Fig.4  The engineering stress-strain curves for deformed and partitioned (Q&P) steels with high dislocation density[72]
Fig.5  Schematics of the interaction mechanism between the second phase particles and dislocation(a) looping mechanism (b) cutting mechanism

Steel

Composition (mass fraction / %)

Precipitation

Ref.

CuNiMnAlTiCoMoCrVWNbSiBCFe
13Cr13CoNiMoTi-4.6-0.20.38133.413.2-----0.003Bal.Ni3(Ti, Al)+R'+α'[61]
5Ni2Al3Mn1.5Cu1.5532--1.5--1.50.07-0.010.05Bal.NiAl+Cu[74]
4Cu4Ni4MnAl4441------0.070.48-0.05Bal.Cu+NiAl[75]
MA_H_Al-311.81.3---------0.158Bal.NiMn+Ni2AlMn[76]
18Ni8Al2Ti12Cr-18-8.12.0-1.912.2------Bal.NiAl+Ni2TiAl[77]
7Ni10Cr8Co2Al-7.0-1.8-8.02.759.9-2.43----Bal.Laves+NiAl[78]
12Cr4Ni2Cu2Co2.24.10.610.030.532.10.5112.00.005-0.110.57-0.09Bal.Cu+MC+Ni3Ti[79]
9Ni12CrAlTi-9.05-0.70.35-2.012.1---0.05--Bal.NiAl+Ni3(Ti, Al)[80]
Table 6  Compositions and co-precipitations of ultra-high strength steels[61,74,75,76,77,78,79,80]
Fig.6  Schematics of co-precipitation of nanoparticles in ultra-high strength high-toughness steels(a) precipitation sequence of nanoparticles in Fe-Cu-Ni-Al steelColor online(b) precipitation sequence of nanoparticles in Fe-Al-Cr-Ni-Ti steel

Steel

Composition (mass fraction / %)

YS

MPa

UTS

MPa

EL

%

Hardness

HB

Ak (20 ℃)

J

Ref.

CMnSiCrNiMoOtherFe
Armox 440T0.211.20.51.02.50.70.005BBal.1100150010420~48045 (-40 ℃)[91]
Armox 500T0.321.20.271.01.80.70.005BBal.125016008480~54032 (-40 ℃)[91]
Armox 600T0.471.00.41.53.00.70.003BBal.-20007570~64012 (-40 ℃)[91]
MIL-A461000.280.90.530.30.190.240.03Ti+0.18CuBal.1050175012480~54025 (-40 ℃)[92]
UHT 4400.251.40.61.20.50.350.002BBal.1150145014420~48016 (-40 ℃)[93]
HHA 5000.320.80.51.20.50.30.002BBal.1350164014477~53416 (-40 ℃)[93]
Table 7  Compositions and properties of typical ultra-high strength armor steels[91,92,93]

Steel

Composition (mass fraction / %)

YS

MPa

UTS

MPa

EL

%

Hardness

HB

Ak (20 ℃)

J

Ref.

CMnSiCrNiMoOtherFe
Mn14Cr1.27140.51.7---Bal.500-50200~230176[94]
400V0.21.80.51.50.80.50.05NbBal.1000130012380~42030 (-40 ℃)[95]
500V0.31.60.51.51.00.50.05NbBal.130016508470~53025 (-25 ℃)[95]
JEFEH360A0.201.60.60.8-0.30.003BBal.1147120323.9388156[96]
JEFEH500A0.351.60.60.8-0.30.003BBal.1321151622.954365[96]
WNM3600.201.60.61.41.00.50.004BBal.-129013362~37958 (-20 ℃)[96]
Cr262.70.80.7261.51.00.7REBal.---65410[97]
Table 8  Compositions and properties of the liner steels in semi-autogenous mill[94,95,96,97]

Steel

Composition (mass fraction / %)

Hardness

HB

Ak (20 ℃)

J

CMnSiCrNiMoVOtherFe
HH3010.40.651.05.32-1.51.00.05Nb+0.11AlBal.65418
Wirth0.510.270.944.95-1.410.8-Bal.59511.1
6422 Steel0.390.690.210.821.460.260.0060.21Al+0.18CuBal.6541.96
DQ Steel0.510.270.944.95-1.410.8-Bal.615-
SL steel0.350.750.41.24.00.45-0.05AlBal.65415
H130.40.351.05.0-1.51.0-Bal.61511
Table 9  Compositions and properties of the shield cutter steels[99]

Steel

Composition (mass fraction / %)

YS

MPa

UTS

MPa

EL

%

Hardness

HB

Ak (20 ℃)

J

Ref.

CMnSiCrNiMoVFe
4330V0.300.80.20.91.80.450.1Bal.110011801636070[102,103]
42CrMo0.430.80.31.2-0.22-Bal.10451145--69[104]
43CrNi2MoV0.43-0.31.01.60.330.13Bal.972107016.5311~33679[105]
Table 10  Compositions and properties of the fracturing pump fluid end steels[102,103,104,105]
Fig.7  Engineering stress-strain curves of different steels(a) 9Mn, 9Mn-V, 9Mn-V-Nb hot-rolled steels[106](b) 10Mn-V steel warm rolled at different temperatures and reductions[107]
Fig.8  Engineering stress-strain curves (a), cold bending picture (b) and bulletproof test picture (c) of 7Mn steel (HR—hot rolled)
Fig.9  UTS and impact toughness of typical ultra-high strength steel grades compared with developed medium Mn steel (7Mn)[20,21,22,23,24,27,28,36,37,38,39,40,42,43,44,45,46,89,90,108]
[1] Wan X R, Xu C G. The High and Ultrahigh Strength Steels [M]. Beijing: China Machine Press, 1988: 2
[1] 万翛如, 许昌淦. 高强度及超高强度钢 [M]. 北京: 机械工业出版社, 1988: 2
[2] Czyryca E J. Advances in high strength steel technology for naval hull construction [J]. Key Eng. Mater., 1993, 84-85: 491
[3] Pellissier G E. Effects of microstructure on the fracture toughness of ultrahigh-strength steels [J]. Eng. Fract. Mech., 1968, 1: 55
[4] https://mp.weixin.qq.com/s/XVFi_UkiSzoZ88JE4DcTbQ
[5] Jahazi M. The influence of thermomechanical treatment on the microstructure and mechanical properties of aisi 4130 steel [J]. Metall. Mater., 1998, 4: 818
[6] Youngblood J L, Raghavan M. Correlation of microstructure with mechanical properties of 300M steel [J]. Metall. Trans., 1977, 8A: 1439
[7] Zhang K M, Zou J X, Grosdidier T, et al. Microstructure and property modifications of an AISI H13 (4Cr5MoSiV) steel induced by pulsed electron beam treatment [J]. J. Vac. Sci. Technol., 2010, 28A: 1349
[8] Grujicic M. Coherent precipitation of M2C carbides in AF1410 steel [J]. Mater. Sci. Eng., 1989, A117: 215
[9] Tewari R, Mazumder S, Batra I S, et al. Precipitation in 18 wt% Ni maraging steel of grade 350 [J]. Acta Mater., 2000, 48: 1187
[10] Liu P, Stigenberg A H, Nilsson J O. Quasicrystalline and crystalline precipitation during isothermal tempering in a 12Cr-9Ni-4Mo maraging stainless steel [J]. Acta Metall. Mater., 1995, 43: 2881
[11] Etemad M R, Turner C E. An experimental investigation of slow stable crack growth using HY130 steel [J]. J. Strain Anal. Eng. Des., 1985, 20: 201
[12] Wang L J, Cai Q W, Yu W, et al. Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel [J]. Acta Metall. Sin., 2010, 46: 687
[12] 王立军, 蔡庆伍, 余 伟等. 1500 MPa级低合金超高强钢的微观组织与力学性能 [J]. 金属学报, 2010, 46: 687
[13] Saeidi N, Ekrami A. Comparison of mechanical properties of martensite/ferrite and bainite/ferrite dual phase 4340 steels [J]. Mater. Sci. Eng., 2009, A523: 125
[14] Lee W S, Su T T. Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions [J]. J. Mater. Process. Technol., 1999, 87: 198
[15] Fan C G, Dong H, Shi J, et al. Microstructure and mechanical properties of 2200 MPa grade ultra-high strength low alloy steels [J]. Ordn. Mater. Sci. Eng., 2006, 29(2): 31
[15] 范长刚, 董 瀚, 时 捷等. 2200 MPa级超高强度低合金钢的组织和力学性能 [J]. 兵器材料科学与工程, 2006, 29(2): 31
[16] Caballero F G, Santofimia M J, García-Mateo C, et al. Theoretical design and advanced microstructure in super high strength steels [J]. Mater. Des., 2009, 30: 2077
[17] Borgioli F, Galvanetto E, Fossati A, et al. Glow-discharge nitriding and post-oxidising treatments of AISI H11 steel [J]. Surf. Coat. Technol., 2003, 162: 61
[18] Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
[19] Ayer R, Machmeier P M. Microstructural basis for the effect of chromium on the strength and toughness of AF1410-based high performance steels [J]. Metall. Mater. Trans., 1996, 27A: 2510
[20] Manigandan K, Srivatsan T S, Tammana D, et al. Influence of microstructure on strain-controlled fatigue and fracture behavior of ultra high strength alloy steel AerMet 100 [J]. Mater. Sci. Eng., 2014, A601: 29
[21] Luo H, Yin Z D, Zhu J C, et al. Influence of grain size on mechanical properties of 18Ni maraging steel [J]. Mater. Sci. Technol., 2000, 8(1): 59
[21] 罗 鸿, 尹钟大, 朱景川等. 晶粒尺寸对18Ni马氏体时效钢力学性能的影响 [J]. 材料科学与工艺, 2000, 8(1): 59
[22] Fan Z B, Han D, Duan S C, et al. Research and application of T250 maraging steels [J]. Aerosp. Manuf. Technol., 2010, (5): 41
[22] 范赵斌, 韩 冬, 段述苍等. T250马氏体时效钢的研究现状及应用 [J]. 航天制造技术, 2010, (5): 41
[23] Kim Y G, Kim G S, Chang S L, et al. Microstructure and mechanical properties of a cobalt-free tungsten-bearing maraging steel [J]. Mater. Sci. Eng., 1986, 79: 133
[24] Ren H L, He Z J, Wang X C, et al. Cobalt-free maraging alloy [J]. J. Univ. Sci. Technol. Beijing, 1987, 9(4): 31
[24] 任怀亮, 何肇基, 王学成等. 无钴马氏体时效合金 [J]. 北京钢铁学院学报, 1987, 9(4): 31
[25] Asayama Y, Kawase Y, Okada M, et al. Mechanical properties of a cobalt free maraging steel containing chromium [J]. J. Jpn. Inst. Met., 1987, 51: 76
[26] Liu C, Zhao M C, Zhao Y C, et al. Ultra-high cycle fatigue behavior of a novel 1.9 GPa grade super-high-strength maraging stainless steel [J]. Mater. Sci. Eng., 2019, A775: 50
[27] Liang J X, Liu Z B, Yang Z Y. Development and application of high strength stainless steel [J]. Aerosp. Mater. Technol., 2013, 43(3): 1
[27] 梁剑雄, 刘振宝, 杨志勇. 高强不锈钢的发展与应用技术 [J]. 宇航材料工艺, 2013, 43(3): 1
[28] Kuehmann C, Tufts B, Trester P. Computational design for ultra high-strength alloy [J]. Adv. Mater. Proc., 2008, 166: 37
[29] Nunes M M, Da Silva E M, Renzetti R A, et al. Analysis of quenching parameters in AISI 4340 steel by using design of experiments [J]. Mater. Res., 2019, 22: e20180315
[30] Zhao L X, Zheng D W, Zheng L Y, et al. Novel water-air circulation time controlled quenching process for AISI4140 steel [J]. Hot Working Technol., 2013, 42(14): 169
[30] 赵立新, 郑大伟, 郑立允等. AISI 4140钢水-空循环控时淬火新工艺 [J]. 热加工工艺, 2013, 42(14): 169
[31] Saeidi N, Ekrami A. Microstructure-toughness relationship in AISI4340 steel [J]. Defect Diffus. Forum, 2011, 312-315: 110
[32] Jahazi M, Egbali B. The influence of hot rolling parameters on the microstructure and mechanical properties of an ultra-high strength steel [J]. J. Mater. Process. Technol., 2000, 103: 276
[33] Krauss G. Deformation and fracture in martensitic carbon steels tempered at low temperatures [J]. Metall. Mater. Trans., 2001, 32B: 205
[34] Chang L, Smith G D W. The silicon effect in the tempering of martensite in steels [J]. J. Phys. Colloques, 1984, 45: C9-397-C9-401
[35] Sun M, Xiao K, Dong C F, et al. Electrochemical corrosion behavior of 300M ultra high strength steel in chloride containing environment [J]. Acta Metall. Sin. (Engl. Lett., 2010, 23: 301
[36] Liu F G, Lin X, Song M H, et al. Effect of tempering temperature on microstructure and mechanical properties of laser solid formed 300M steel [J]. J. Alloys Compd., 2016, 689: 225
[37] Liu X M, Hua F, Liu R, et al. Effect of heat treatment on the mechanical properties of steel 30CrMnSiNi2A [J]. Iron Steel, 2003, 38(1): 43
[37] 刘宪民, 花 峰, 刘 蕤等. 热处理对30CrMnSiNi2A钢力学性能的影响 [J]. 钢铁, 2003, 38(1): 43
[38] Wang W M, Wang S Q, Liu X M. Effect of heat treatment processes on the property and microstructure of ultra-high strength steel 45CrNiMo1VA [J]. Iron Steel, 1995, 30(11): 48
[38] 王维明, 王淑勤, 刘宪民. 热处理工艺对45CrNiMolVA超高强度钢组织和性能的影响 [J]. 钢铁, 1995, 30(11): 48
[39] He Z J. Alloying design of ultrahigh strength low-alloy steel (USLS) [J]. J. Guangdong Inst. Technol., 1991, 8(4): 57
[39] 何肇基. 低合金超高强度钢的合金设计 [J]. 广东工业大学学报, 1991, 8(4): 57
[40] Zhang S H. Heat treatment and baic performance of 406 steel [J]. J. Changchun Inst. Opt. Fine Mech., 1994, 17(1): 57
[40] 张守华. 406钢的热处理及基本性能 [J]. 长春光学精密机械学院学报, 1994, 17(1): 57
[41] Chen D M, Kang M K, et al. Fatigue properties of meta-bainite in steel 40CrMnSiMoVA [J]. Acta Metall. Sin. (Engl. Lett., 1992, 5: 206
[42] Zhao Z Y, Piao X J, Wang S Y. Study on medium temperature super high strength steel 38Cr2Mo2VA [J]. J. Mater. Eng., 1985, (6): 11
[42] 赵振业, 朴相俊, 王素英. 中温超高强度钢38Cr2Mo2VA的研究 [J]. 材料工程, 1985, (6): 11
[43] Handerhan K J, Garrison W M, Moody N R. A comparison of the fracture behavior of two heats of the secondary hardening steel AF1410 [J]. Metall. Trans., 1989, 20A: 105
[44] Wan X R. Development of advanced highly alloy of secondary hardening ultrahigh-strength steels [J]. J. Mater. Eng., 1994, (11): 1
[44] 万翛如. 新型高合金二次硬化超高强度钢的发展 [J]. 材料工程, 1994, (11): 1
[45] Xie J P, Cao F Y, Wang M H, et al. Effects of heat treatment on microstructure and properties of spray-formed H13 steel [J]. J. Henan Univ. Sci. Technol. (Nat. Sci.), 2016, 37(5): 1
[45] 谢敬佩, 曹飞杨, 王淼辉等. 热处理对喷射成形H13钢组织性能的影响 [J]. 河南科技大学学报(自然科学版), 2016, 37(5): 1
[46] Zhao L, Liu X M, Yong Q L, et al. Effect of heat treatment on structure and properties of low alloying ultra-high strength steel DT300 [J]. Spec. Steel, 2007, 28(2): 29
[46] 赵 磊, 刘宪民, 雍岐龙等. 热处理对DT300低合金超高强度钢组织和性能的影响 [J]. 特殊钢, 2007, 28(2): 29
[47] Wen T, Hu X F, Song Y Y, et al. Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel [J]. Acta Metall. Sin., 2014, 50: 447
[47] 温 涛, 胡小锋, 宋元元等. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响 [J]. 金属学报, 2014, 50: 447
[48] Morikawa H, Komatsu H, Tanino M. Effect of chromium upon coherency between M2C precipitates and α-iron matrix in 0.1C-10Ni-8Co-lMo-Cr steels [J]. J. Electron Microsc., 1973, 22: 99
[49] Speich G R, Dabkowski D S, Porter L F. Strength and toughness of Fe-10Ni alloys containing C, Cr, Mo, and Co [J]. Metall. Trans., 1973, 4: 303
[50] Soto K. Improving the toughness of ultrahigh strength steel [D]. Berkeley: University of California, 2002
[51] Wang Z H, Wang H M, Liu D. Microstructure and mechanical properties of AF1410 ultra-high strength steel using laser additive manufacture technique [J]. Chin. J. Lasers, 2016, 43(4): 0403001
[51] 王志会, 王华明, 刘 栋. 激光增材制造AF1410超高强度钢组织与力学性能研究 [J]. 中国激光, 2016, 43(4): 0403001
[52] International Nickel Co. (Mond) Ltd. Ultra-high-strength steels (Maraging steels) [J]. J. Sci. Instrum., 1963, 40: 86
[53] Jiang Y, Yin Z D, Zhu J C, et al. Development of ultra-high strength maraging steel [J]. Spec. Steel, 2004, 25(2): 1
[53] 姜 越, 尹钟大, 朱景川等. 超高强度马氏体时效钢的发展 [J]. 特殊钢, 2004, 25(2): 1
[54] Duan Q Q, Wang B, Zhang P, et al. Improvement of notch fatigue properties of ultra-high CM400 maraging steel through shot peening [J]. J. Mater. Res., 2017, 32: 4424
[55] He Y, Yang K, Kong F Y, et al. Mechanical properties of ultra-high-strength 18Ni cobalt-free maraging steel [J]. Acta Metall. Sin., 2002, 38: 278
[55] 何 毅, 杨 柯, 孔凡亚等. 超高强度18Ni无钴马氏体时效钢的力学性能 [J]. 金属学报, 2002, 38: 278
[56] Yang W Y. Investigation on strength-toughness mechanism of low nickel, cobalt free maraging steel [D]. Taiyuan: North University of China, 2009
[56] 杨维宇. 低Ni无Co马氏体时效钢强韧化研究 [D]. 太原: 中北大学, 2009
[57] Xiang S, Wang J P, Sun Y L, et al. Effect of ageing process on mechanical properties of martensite precipitation-hardening stainless steel [J]. Adv. Mater. Res., 2010, 146-147: 382
[58] Bajguirani H R H. The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel [J]. Mater. Sci. Eng., 2002, A338: 142
[59] Hochanadel P W, Edwards G R, Robino C V, et al. Heat treatment of investment cast PH 13-8 Mo stainless steel: Part I. Mechanical properties and microstructure [J]. Metall. Mater. Trans., 1994, 25A: 789
[60] Li N, Chen J Y, Long J M. Strengthening characteristic and optimization of heat treatment for Custom465 maraging stainless steel [J]. Phys. Exam. Test., 2005, 23(6): 4
[60] 李 楠, 陈嘉砚, 龙晋明. Custom465马氏体时效不锈钢的强韧化特征及工艺优化 [J]. 物理测试, 2005, 23(6): 4
[61] Li Y C, Yan W, Cotton J D, et al. A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species [J]. Mater. Des., 2015, 82: 56
[62] Tian J L, Wang W, Babar Shahzad M, et al. A New maraging stainless steel with excellent strength-toughness-corrosion synergy [J]. Materials, 2017, 10: 1293
[63] Jiao Z B, Liu C T. Ultrahigh-strength steels strengthened by nanoparticles [J]. Sci. Bull., 2017, 62: 1043
[64] Bhadeshia H K D H, Edmonds D V. The bainite transformation in a silicon steel [J]. Metall. Trans., 1979, 10A: 895
[65] Hodgson P D, Timokhina I, Xiong X Y, et al. Understanding of the bainite transformation in a Nano-structured bainitic steel [J]. Solid State Phenom., 2011, 172-174: 123
[66] Zhang P, Zhang F C, Wang T S. Preparation and microstructure of hard bainite in surface layer of carburized 20CrMnMoAl steel [J]. Acta Metall. Sin., 2011, 47: 1038
[66] 张 朋, 张福成, 王天生. 渗碳20CrMnMoAl钢表面硬贝氏体的制备及其组织特征 [J]. 金属学报, 2011, 47: 1038
[67] Xu G, Cao F L, Bu C H, et al. Status and progress of super-bainitic steels [J]. Spec. Steel, 2012, 33(1): 18
[67] 徐 光, 操龙飞, 补丛华等. 超级贝氏体钢的现状和进展 [J]. 特殊钢, 2012, 33(1): 18
[68] Gong W, Tomota Y, Koo M S, et al. Effect of ausforming on nanobainite steel [J]. Scr. Mater., 2010, 63: 819
[69] Jin X J, Min N, Zheng K Y, et al. The effect of austenite deformation on bainite formation in an alloyed eutectoid steel [J]. Mater. Sci. Eng., 2006, A438-440: 170
[70] Chiou C S, Yang J R, Huang C Y. The effect of prior compressive deformation of austenite on toughness property in an ultra-low carbon bainitic steel [J]. Mater. Chem. Phys., 2001, 69: 113
[71] Taylor G I. The mechanism of plastic deformation of crystals. Part I.—Theoretical [J]. Proc. Roy. Soc., 1934, 145A: 362
[72] He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
[73] Schnitzer R, Schober M, Zinner S, et al. Effect of Cu on the evolution of precipitation in an Fe-Cr-Ni-Al-Ti maraging steel [J]. Acta Mater., 2010, 58: 3733
[74] Jiao Z B, Luan J H, Miller M K, et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles [J]. Acta Mater., 2015, 97: 58
[75] Kapoor M, Isheim D, Ghosh G, et al. Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel [J]. Acta Mater., 2014, 73: 56
[76] Millán J, Sandl?bes S, Al-Zubi A, et al. Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe-Mn maraging steels [J]. Acta Mater., 2014, 76: 94
[77] Liebscher C H, Radmilovi? V R, Dahmen U, et al. A hierarchical microstructure due to chemical ordering in the bcc lattice: Early stages of formation in a ferritic Fe-Al-Cr-Ni-Ti alloy [J]. Acta Mater., 2015, 92: 220
[78] Sun L, Simm T H, Martin T L, et al. A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates [J]. Acta Mater., 2018, 149: 285
[79] Xu W, Rivera-Díaz-del-Castillo P E J, Yan W, et al. A new ultrahigh-strength stainless steel strengthened by various coexisting nanoprecipitates [J]. Acta Mater., 2010, 58: 4067
[80] Leitner H, Schober M, Schnitzer R. Splitting phenomenon in the precipitation evolution in an Fe-Ni-Al-Ti-Cr stainless steel [J]. Acta Mater., 2010, 58: 1261
[81] Yoo C H, Lee H M, Chan J W, et al. M2C precipitates in isothermal tempering of high Co-Ni secondary hardening steel [J]. Metall. Mater. Trans., 1996, 27A: 3466
[82] Briant C L, Banerji S K. Intergranularfailure in steel: The role of grain-boundary composition [J]. Int. Met. Rev., 1978, 23: 164
[83] Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels [J]. Acta Mater., 2013, 61: 5996
[84] Saha A, Olson G B. Computer-aided design of transformation toughened blast resistant naval hull steels: Part I [J]. J. Comput. Aided Mater. Des., 2007, 14: 177
[85] Li Y, Li W, Liu W Q, et al. The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel [J]. Acta Mater., 2018, 146: 126
[86] Raabe D, Ponge D, Dmitrieva O, et al. Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility [J]. Scr. Mater., 2009, 60: 1141
[87] Li H Y, Lu X W, Li W J, et al. Microstructure and mechanical properties of an ultrahigh-strength 40SiMnNiCr steel during the one-step quenching and partitioning process [J]. Metall. Mater. Trans., 2010, 41A: 1284
[88] Wang X D, Zhong N, Rong Y H, et al. Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process [J]. J. Mater. Res., 2009, 24: 260
[89] Qin S W, Liu Y, Hao Q G, et al. High carbon microalloyed martensitic steel with ultrahigh strength-ductility [J]. Mater. Sci. Eng., 2016, A663: 151
[90] Gao G H, Zhang H, Gui X L, et al. Enhanced ductility and toughness in an ultrahigh-strength Mn-Si-Cr-C steel: The great potential of ultrafine filmy retained austenite [J]. Acta Mater., 2014, 76: 425
[91] https://www.ssab.cn/products/brands/armox
[92] Grujicic M, Arakere A, Ramaswami S, et al. Gas metal arc welding process modeling and prediction of weld microstructure in MIL A46100 armor-grade martensitic steel [J]. J. Mater. Eng. Perform., 2013, 22: 1541
[93] https://www.bisalloy.com.au/Products/BISALLOYARMOURSTEEL.aspx
[94] El-Mahallawi I, Abdel-Karim R, Naguib A. Evaluation of effect of chromium on wear performance of high manganese steel [J]. Mater. Sci. Technol., 2001, 17: 1385
[95] Luo L J. Overview of high strength wear resistant steel production abroad [J]. Wide Heavy Plate, 2008, 14(3): 46
[95] 罗丽军. 国外高强度耐磨钢生产概述 [J]. 宽厚板, 2008, 14(3): 46
[96] Wang J. Study on impact abrasive wear performance of high strength toughness wea-resistant steel plate [D]. Kunming: Kunming University of Science and Technology, 2017
[96] 王 军. 高强高韧性耐磨钢板的冲击磨料磨损性能研究 [D]. 昆明: 昆明理工大学, 2017
[97] Mao S L, Shui H Y, Chen S S, et al. Microstructures and properties of Cr26 high chromium cast iron and its heat treatment [J]. Foundry Technol., 2011, 32: 1230
[97] 毛双亮, 水恒勇, 陈闪闪等. Cr26型高铬铸铁组织性能及其热处理工艺 [J]. 铸造技术, 2011, 32: 1230
[98] Yang M, Xiong J, Guo Z X, et al. Research status of cutterhead and cutter in shield machine at home and abroad [J]. Tool Eng., 2013, 47(4): 8
[98] 杨 明, 熊 计, 郭智兴等. 国内外盾构机刀盘和刀具研究现状概况 [J]. 工具技术, 2013, 47(4): 8
[99] Zhang Z J, Zhang L, He J, et al. The status and prospect of shield cutters industry [J]. Cement. Carbide, 2015, 32: 340
[99] 张忠健, 张 璐, 贺 军等. 盾构刀具产业现状及发展 [J]. 硬质合金, 2015, 32: 340
[100] Guan H S, Gao B. Calculation for service life of cutting tools of shields [J]. Const. Mach. Equip., 2006, 37(1): 25
[100] 管会生, 高 波. 盾构切削刀具寿命的计算 [J]. 工程机械, 2006, 37(1): 25
[101] Sang W. Causes and preventive measures of cracks on fluid end of fracturing pump [J]. Petro Chem. Equip., 2013, 16(7): 51
[101] 桑 伟. 压裂泵液力端产生裂纹的原因及预防措施 [J]. 石油和化工设备, 2013, 16(7): 51
[102] Tomita Y. Improved fracture toughness of ultrahigh strength steel through control of non-metallic inclusions [J]. J. Mater. Sci., 1993, 28: 853
[103] Sheng X H. Production technology of 4330V forgings for deep-sea oil production equipment [P]. Chin Pat, CN201410172330.9, 2014
[103] (盛雪华. 深海采油装备用4330V锻件的生产工艺 [P]. 中国专利, CN201410172330.9, 2014)
[104] Yang M, Cui M, Li Z Y, et al. Effect of tempering temperature on microstructure and mechanical properties of 42CrMo steel [J]. Modern Metall., 2019, 47(1): 4
[104] 杨 敏, 崔 冕, 李占阳等. 回火温度对42CrMo钢金相组织及力学性能的影响 [J]. 现代冶金, 2019, 47(1): 4
[105] Hua Y C, Zhao J Y, Su M R. Experimental study of fatigue fracture of fracturing pump box steel 43CrNi2MoV [J]. J. Southwest Pet. Inst., 1992, 14(4): 74
[105] 华寅初, 赵京艳, 苏美容. 压裂泵阀箱钢43CrNi2MoV疲劳断裂的试验研究 [J]. 西南石油学院学报, 1992, 14(4): 74
[106] Zhu Y S, Hu B, Luo H W. Influence of Nb and V on microstructure and mechanical properties of hot-rolled medium Mn steels [J]. Steel Res. Int., 2018, 89: 1700389
[107] Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review [J]. J. Mater. Sci. Technol., 2017, 33: 1457
[108] Avishan B, Yazdani S, Caballero F G, et al. Characterisation of microstructure and mechanical properties in two different nanostructured bainitic steels [J]. Mater. Sci. Technol., 2015, 31: 1508
[1] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[2] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[6] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[7] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[8] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[9] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[10] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[11] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[12] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[13] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[14] ZHOU Cheng, ZHAO Tan, YE Qibin, TIAN Yong, WANG Zhaodong, GAO Xiuhua. Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel[J]. 金属学报, 2022, 58(12): 1557-1569.
[15] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
No Suggested Reading articles found!