|
|
Progress and Perspective of Ultra-High Strength Steels Having High Toughness |
LUO Haiwen( ),SHEN Guohui |
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China |
|
Cite this article:
LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness. Acta Metall Sin, 2020, 56(4): 494-512.
|
Abstract Ultra-high strength steels have been widely used in the critical engineering structures in both military and civilian applications due to the combination of ultra-high strength and excellent toughness. In this paper, firstly, the typical ultra-high strength steel grades that have been employed were introduced, and their compositions, mechanical properties, application and histories of development were summarized with the emphasis on their microstructures and strengthening/toughening mechanism; secondly, the latest progress on the emerging ultra-high strength steel grades was reviewed, including their compositions, microstructures, strengthening mechanism and mechanical properties; thirdly, the newly emerging demands on replacing the currently employed ultra-high strength steels in China were defined, including steels for low-density but ultra-strong armors, the large ball grinding mill, cutters of tunnel boring machine and high pressure fracturing pump; finally, recent research results on ultra-high strength and high-toughness medium Mn steel were presented, which overcame the trade-off of strength and toughness to a greater extent; on this basis, some suggestions were put forward for the future development of these steel grades to meet the urgent national demands.
|
Received: 29 September 2019
|
|
Fund: National Natural Science Foundation of China(51831002);Foundamental Research Founds for the Central Universities(FRF-TP-18-002C2) |
[1] | Wan X R, Xu C G. The High and Ultrahigh Strength Steels [M]. Beijing: China Machine Press, 1988: 2 | [1] | 万翛如, 许昌淦. 高强度及超高强度钢 [M]. 北京: 机械工业出版社, 1988: 2 | [2] | Czyryca E J. Advances in high strength steel technology for naval hull construction [J]. Key Eng. Mater., 1993, 84-85: 491 | [3] | Pellissier G E. Effects of microstructure on the fracture toughness of ultrahigh-strength steels [J]. Eng. Fract. Mech., 1968, 1: 55 | [4] | https://mp.weixin.qq.com/s/XVFi_UkiSzoZ88JE4DcTbQ | [5] | Jahazi M. The influence of thermomechanical treatment on the microstructure and mechanical properties of aisi 4130 steel [J]. Metall. Mater., 1998, 4: 818 | [6] | Youngblood J L, Raghavan M. Correlation of microstructure with mechanical properties of 300M steel [J]. Metall. Trans., 1977, 8A: 1439 | [7] | Zhang K M, Zou J X, Grosdidier T, et al. Microstructure and property modifications of an AISI H13 (4Cr5MoSiV) steel induced by pulsed electron beam treatment [J]. J. Vac. Sci. Technol., 2010, 28A: 1349 | [8] | Grujicic M. Coherent precipitation of M2C carbides in AF1410 steel [J]. Mater. Sci. Eng., 1989, A117: 215 | [9] | Tewari R, Mazumder S, Batra I S, et al. Precipitation in 18 wt% Ni maraging steel of grade 350 [J]. Acta Mater., 2000, 48: 1187 | [10] | Liu P, Stigenberg A H, Nilsson J O. Quasicrystalline and crystalline precipitation during isothermal tempering in a 12Cr-9Ni-4Mo maraging stainless steel [J]. Acta Metall. Mater., 1995, 43: 2881 | [11] | Etemad M R, Turner C E. An experimental investigation of slow stable crack growth using HY130 steel [J]. J. Strain Anal. Eng. Des., 1985, 20: 201 | [12] | Wang L J, Cai Q W, Yu W, et al. Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel [J]. Acta Metall. Sin., 2010, 46: 687 | [12] | 王立军, 蔡庆伍, 余 伟等. 1500 MPa级低合金超高强钢的微观组织与力学性能 [J]. 金属学报, 2010, 46: 687 | [13] | Saeidi N, Ekrami A. Comparison of mechanical properties of martensite/ferrite and bainite/ferrite dual phase 4340 steels [J]. Mater. Sci. Eng., 2009, A523: 125 | [14] | Lee W S, Su T T. Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions [J]. J. Mater. Process. Technol., 1999, 87: 198 | [15] | Fan C G, Dong H, Shi J, et al. Microstructure and mechanical properties of 2200 MPa grade ultra-high strength low alloy steels [J]. Ordn. Mater. Sci. Eng., 2006, 29(2): 31 | [15] | 范长刚, 董 瀚, 时 捷等. 2200 MPa级超高强度低合金钢的组织和力学性能 [J]. 兵器材料科学与工程, 2006, 29(2): 31 | [16] | Caballero F G, Santofimia M J, García-Mateo C, et al. Theoretical design and advanced microstructure in super high strength steels [J]. Mater. Des., 2009, 30: 2077 | [17] | Borgioli F, Galvanetto E, Fossati A, et al. Glow-discharge nitriding and post-oxidising treatments of AISI H11 steel [J]. Surf. Coat. Technol., 2003, 162: 61 | [18] | Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460 | [19] | Ayer R, Machmeier P M. Microstructural basis for the effect of chromium on the strength and toughness of AF1410-based high performance steels [J]. Metall. Mater. Trans., 1996, 27A: 2510 | [20] | Manigandan K, Srivatsan T S, Tammana D, et al. Influence of microstructure on strain-controlled fatigue and fracture behavior of ultra high strength alloy steel AerMet 100 [J]. Mater. Sci. Eng., 2014, A601: 29 | [21] | Luo H, Yin Z D, Zhu J C, et al. Influence of grain size on mechanical properties of 18Ni maraging steel [J]. Mater. Sci. Technol., 2000, 8(1): 59 | [21] | 罗 鸿, 尹钟大, 朱景川等. 晶粒尺寸对18Ni马氏体时效钢力学性能的影响 [J]. 材料科学与工艺, 2000, 8(1): 59 | [22] | Fan Z B, Han D, Duan S C, et al. Research and application of T250 maraging steels [J]. Aerosp. Manuf. Technol., 2010, (5): 41 | [22] | 范赵斌, 韩 冬, 段述苍等. T250马氏体时效钢的研究现状及应用 [J]. 航天制造技术, 2010, (5): 41 | [23] | Kim Y G, Kim G S, Chang S L, et al. Microstructure and mechanical properties of a cobalt-free tungsten-bearing maraging steel [J]. Mater. Sci. Eng., 1986, 79: 133 | [24] | Ren H L, He Z J, Wang X C, et al. Cobalt-free maraging alloy [J]. J. Univ. Sci. Technol. Beijing, 1987, 9(4): 31 | [24] | 任怀亮, 何肇基, 王学成等. 无钴马氏体时效合金 [J]. 北京钢铁学院学报, 1987, 9(4): 31 | [25] | Asayama Y, Kawase Y, Okada M, et al. Mechanical properties of a cobalt free maraging steel containing chromium [J]. J. Jpn. Inst. Met., 1987, 51: 76 | [26] | Liu C, Zhao M C, Zhao Y C, et al. Ultra-high cycle fatigue behavior of a novel 1.9 GPa grade super-high-strength maraging stainless steel [J]. Mater. Sci. Eng., 2019, A775: 50 | [27] | Liang J X, Liu Z B, Yang Z Y. Development and application of high strength stainless steel [J]. Aerosp. Mater. Technol., 2013, 43(3): 1 | [27] | 梁剑雄, 刘振宝, 杨志勇. 高强不锈钢的发展与应用技术 [J]. 宇航材料工艺, 2013, 43(3): 1 | [28] | Kuehmann C, Tufts B, Trester P. Computational design for ultra high-strength alloy [J]. Adv. Mater. Proc., 2008, 166: 37 | [29] | Nunes M M, Da Silva E M, Renzetti R A, et al. Analysis of quenching parameters in AISI 4340 steel by using design of experiments [J]. Mater. Res., 2019, 22: e20180315 | [30] | Zhao L X, Zheng D W, Zheng L Y, et al. Novel water-air circulation time controlled quenching process for AISI4140 steel [J]. Hot Working Technol., 2013, 42(14): 169 | [30] | 赵立新, 郑大伟, 郑立允等. AISI 4140钢水-空循环控时淬火新工艺 [J]. 热加工工艺, 2013, 42(14): 169 | [31] | Saeidi N, Ekrami A. Microstructure-toughness relationship in AISI4340 steel [J]. Defect Diffus. Forum, 2011, 312-315: 110 | [32] | Jahazi M, Egbali B. The influence of hot rolling parameters on the microstructure and mechanical properties of an ultra-high strength steel [J]. J. Mater. Process. Technol., 2000, 103: 276 | [33] | Krauss G. Deformation and fracture in martensitic carbon steels tempered at low temperatures [J]. Metall. Mater. Trans., 2001, 32B: 205 | [34] | Chang L, Smith G D W. The silicon effect in the tempering of martensite in steels [J]. J. Phys. Colloques, 1984, 45: C9-397-C9-401 | [35] | Sun M, Xiao K, Dong C F, et al. Electrochemical corrosion behavior of 300M ultra high strength steel in chloride containing environment [J]. Acta Metall. Sin. (Engl. Lett., 2010, 23: 301 | [36] | Liu F G, Lin X, Song M H, et al. Effect of tempering temperature on microstructure and mechanical properties of laser solid formed 300M steel [J]. J. Alloys Compd., 2016, 689: 225 | [37] | Liu X M, Hua F, Liu R, et al. Effect of heat treatment on the mechanical properties of steel 30CrMnSiNi2A [J]. Iron Steel, 2003, 38(1): 43 | [37] | 刘宪民, 花 峰, 刘 蕤等. 热处理对30CrMnSiNi2A钢力学性能的影响 [J]. 钢铁, 2003, 38(1): 43 | [38] | Wang W M, Wang S Q, Liu X M. Effect of heat treatment processes on the property and microstructure of ultra-high strength steel 45CrNiMo1VA [J]. Iron Steel, 1995, 30(11): 48 | [38] | 王维明, 王淑勤, 刘宪民. 热处理工艺对45CrNiMolVA超高强度钢组织和性能的影响 [J]. 钢铁, 1995, 30(11): 48 | [39] | He Z J. Alloying design of ultrahigh strength low-alloy steel (USLS) [J]. J. Guangdong Inst. Technol., 1991, 8(4): 57 | [39] | 何肇基. 低合金超高强度钢的合金设计 [J]. 广东工业大学学报, 1991, 8(4): 57 | [40] | Zhang S H. Heat treatment and baic performance of 406 steel [J]. J. Changchun Inst. Opt. Fine Mech., 1994, 17(1): 57 | [40] | 张守华. 406钢的热处理及基本性能 [J]. 长春光学精密机械学院学报, 1994, 17(1): 57 | [41] | Chen D M, Kang M K, et al. Fatigue properties of meta-bainite in steel 40CrMnSiMoVA [J]. Acta Metall. Sin. (Engl. Lett., 1992, 5: 206 | [42] | Zhao Z Y, Piao X J, Wang S Y. Study on medium temperature super high strength steel 38Cr2Mo2VA [J]. J. Mater. Eng., 1985, (6): 11 | [42] | 赵振业, 朴相俊, 王素英. 中温超高强度钢38Cr2Mo2VA的研究 [J]. 材料工程, 1985, (6): 11 | [43] | Handerhan K J, Garrison W M, Moody N R. A comparison of the fracture behavior of two heats of the secondary hardening steel AF1410 [J]. Metall. Trans., 1989, 20A: 105 | [44] | Wan X R. Development of advanced highly alloy of secondary hardening ultrahigh-strength steels [J]. J. Mater. Eng., 1994, (11): 1 | [44] | 万翛如. 新型高合金二次硬化超高强度钢的发展 [J]. 材料工程, 1994, (11): 1 | [45] | Xie J P, Cao F Y, Wang M H, et al. Effects of heat treatment on microstructure and properties of spray-formed H13 steel [J]. J. Henan Univ. Sci. Technol. (Nat. Sci.), 2016, 37(5): 1 | [45] | 谢敬佩, 曹飞杨, 王淼辉等. 热处理对喷射成形H13钢组织性能的影响 [J]. 河南科技大学学报(自然科学版), 2016, 37(5): 1 | [46] | Zhao L, Liu X M, Yong Q L, et al. Effect of heat treatment on structure and properties of low alloying ultra-high strength steel DT300 [J]. Spec. Steel, 2007, 28(2): 29 | [46] | 赵 磊, 刘宪民, 雍岐龙等. 热处理对DT300低合金超高强度钢组织和性能的影响 [J]. 特殊钢, 2007, 28(2): 29 | [47] | Wen T, Hu X F, Song Y Y, et al. Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel [J]. Acta Metall. Sin., 2014, 50: 447 | [47] | 温 涛, 胡小锋, 宋元元等. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响 [J]. 金属学报, 2014, 50: 447 | [48] | Morikawa H, Komatsu H, Tanino M. Effect of chromium upon coherency between M2C precipitates and α-iron matrix in 0.1C-10Ni-8Co-lMo-Cr steels [J]. J. Electron Microsc., 1973, 22: 99 | [49] | Speich G R, Dabkowski D S, Porter L F. Strength and toughness of Fe-10Ni alloys containing C, Cr, Mo, and Co [J]. Metall. Trans., 1973, 4: 303 | [50] | Soto K. Improving the toughness of ultrahigh strength steel [D]. Berkeley: University of California, 2002 | [51] | Wang Z H, Wang H M, Liu D. Microstructure and mechanical properties of AF1410 ultra-high strength steel using laser additive manufacture technique [J]. Chin. J. Lasers, 2016, 43(4): 0403001 | [51] | 王志会, 王华明, 刘 栋. 激光增材制造AF1410超高强度钢组织与力学性能研究 [J]. 中国激光, 2016, 43(4): 0403001 | [52] | International Nickel Co. (Mond) Ltd. Ultra-high-strength steels (Maraging steels) [J]. J. Sci. Instrum., 1963, 40: 86 | [53] | Jiang Y, Yin Z D, Zhu J C, et al. Development of ultra-high strength maraging steel [J]. Spec. Steel, 2004, 25(2): 1 | [53] | 姜 越, 尹钟大, 朱景川等. 超高强度马氏体时效钢的发展 [J]. 特殊钢, 2004, 25(2): 1 | [54] | Duan Q Q, Wang B, Zhang P, et al. Improvement of notch fatigue properties of ultra-high CM400 maraging steel through shot peening [J]. J. Mater. Res., 2017, 32: 4424 | [55] | He Y, Yang K, Kong F Y, et al. Mechanical properties of ultra-high-strength 18Ni cobalt-free maraging steel [J]. Acta Metall. Sin., 2002, 38: 278 | [55] | 何 毅, 杨 柯, 孔凡亚等. 超高强度18Ni无钴马氏体时效钢的力学性能 [J]. 金属学报, 2002, 38: 278 | [56] | Yang W Y. Investigation on strength-toughness mechanism of low nickel, cobalt free maraging steel [D]. Taiyuan: North University of China, 2009 | [56] | 杨维宇. 低Ni无Co马氏体时效钢强韧化研究 [D]. 太原: 中北大学, 2009 | [57] | Xiang S, Wang J P, Sun Y L, et al. Effect of ageing process on mechanical properties of martensite precipitation-hardening stainless steel [J]. Adv. Mater. Res., 2010, 146-147: 382 | [58] | Bajguirani H R H. The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel [J]. Mater. Sci. Eng., 2002, A338: 142 | [59] | Hochanadel P W, Edwards G R, Robino C V, et al. Heat treatment of investment cast PH 13-8 Mo stainless steel: Part I. Mechanical properties and microstructure [J]. Metall. Mater. Trans., 1994, 25A: 789 | [60] | Li N, Chen J Y, Long J M. Strengthening characteristic and optimization of heat treatment for Custom465 maraging stainless steel [J]. Phys. Exam. Test., 2005, 23(6): 4 | [60] | 李 楠, 陈嘉砚, 龙晋明. Custom465马氏体时效不锈钢的强韧化特征及工艺优化 [J]. 物理测试, 2005, 23(6): 4 | [61] | Li Y C, Yan W, Cotton J D, et al. A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species [J]. Mater. Des., 2015, 82: 56 | [62] | Tian J L, Wang W, Babar Shahzad M, et al. A New maraging stainless steel with excellent strength-toughness-corrosion synergy [J]. Materials, 2017, 10: 1293 | [63] | Jiao Z B, Liu C T. Ultrahigh-strength steels strengthened by nanoparticles [J]. Sci. Bull., 2017, 62: 1043 | [64] | Bhadeshia H K D H, Edmonds D V. The bainite transformation in a silicon steel [J]. Metall. Trans., 1979, 10A: 895 | [65] | Hodgson P D, Timokhina I, Xiong X Y, et al. Understanding of the bainite transformation in a Nano-structured bainitic steel [J]. Solid State Phenom., 2011, 172-174: 123 | [66] | Zhang P, Zhang F C, Wang T S. Preparation and microstructure of hard bainite in surface layer of carburized 20CrMnMoAl steel [J]. Acta Metall. Sin., 2011, 47: 1038 | [66] | 张 朋, 张福成, 王天生. 渗碳20CrMnMoAl钢表面硬贝氏体的制备及其组织特征 [J]. 金属学报, 2011, 47: 1038 | [67] | Xu G, Cao F L, Bu C H, et al. Status and progress of super-bainitic steels [J]. Spec. Steel, 2012, 33(1): 18 | [67] | 徐 光, 操龙飞, 补丛华等. 超级贝氏体钢的现状和进展 [J]. 特殊钢, 2012, 33(1): 18 | [68] | Gong W, Tomota Y, Koo M S, et al. Effect of ausforming on nanobainite steel [J]. Scr. Mater., 2010, 63: 819 | [69] | Jin X J, Min N, Zheng K Y, et al. The effect of austenite deformation on bainite formation in an alloyed eutectoid steel [J]. Mater. Sci. Eng., 2006, A438-440: 170 | [70] | Chiou C S, Yang J R, Huang C Y. The effect of prior compressive deformation of austenite on toughness property in an ultra-low carbon bainitic steel [J]. Mater. Chem. Phys., 2001, 69: 113 | [71] | Taylor G I. The mechanism of plastic deformation of crystals. Part I.—Theoretical [J]. Proc. Roy. Soc., 1934, 145A: 362 | [72] | He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029 | [73] | Schnitzer R, Schober M, Zinner S, et al. Effect of Cu on the evolution of precipitation in an Fe-Cr-Ni-Al-Ti maraging steel [J]. Acta Mater., 2010, 58: 3733 | [74] | Jiao Z B, Luan J H, Miller M K, et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles [J]. Acta Mater., 2015, 97: 58 | [75] | Kapoor M, Isheim D, Ghosh G, et al. Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel [J]. Acta Mater., 2014, 73: 56 | [76] | Millán J, Sandl?bes S, Al-Zubi A, et al. Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe-Mn maraging steels [J]. Acta Mater., 2014, 76: 94 | [77] | Liebscher C H, Radmilovi? V R, Dahmen U, et al. A hierarchical microstructure due to chemical ordering in the bcc lattice: Early stages of formation in a ferritic Fe-Al-Cr-Ni-Ti alloy [J]. Acta Mater., 2015, 92: 220 | [78] | Sun L, Simm T H, Martin T L, et al. A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates [J]. Acta Mater., 2018, 149: 285 | [79] | Xu W, Rivera-Díaz-del-Castillo P E J, Yan W, et al. A new ultrahigh-strength stainless steel strengthened by various coexisting nanoprecipitates [J]. Acta Mater., 2010, 58: 4067 | [80] | Leitner H, Schober M, Schnitzer R. Splitting phenomenon in the precipitation evolution in an Fe-Ni-Al-Ti-Cr stainless steel [J]. Acta Mater., 2010, 58: 1261 | [81] | Yoo C H, Lee H M, Chan J W, et al. M2C precipitates in isothermal tempering of high Co-Ni secondary hardening steel [J]. Metall. Mater. Trans., 1996, 27A: 3466 | [82] | Briant C L, Banerji S K. Intergranularfailure in steel: The role of grain-boundary composition [J]. Int. Met. Rev., 1978, 23: 164 | [83] | Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels [J]. Acta Mater., 2013, 61: 5996 | [84] | Saha A, Olson G B. Computer-aided design of transformation toughened blast resistant naval hull steels: Part I [J]. J. Comput. Aided Mater. Des., 2007, 14: 177 | [85] | Li Y, Li W, Liu W Q, et al. The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel [J]. Acta Mater., 2018, 146: 126 | [86] | Raabe D, Ponge D, Dmitrieva O, et al. Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility [J]. Scr. Mater., 2009, 60: 1141 | [87] | Li H Y, Lu X W, Li W J, et al. Microstructure and mechanical properties of an ultrahigh-strength 40SiMnNiCr steel during the one-step quenching and partitioning process [J]. Metall. Mater. Trans., 2010, 41A: 1284 | [88] | Wang X D, Zhong N, Rong Y H, et al. Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process [J]. J. Mater. Res., 2009, 24: 260 | [89] | Qin S W, Liu Y, Hao Q G, et al. High carbon microalloyed martensitic steel with ultrahigh strength-ductility [J]. Mater. Sci. Eng., 2016, A663: 151 | [90] | Gao G H, Zhang H, Gui X L, et al. Enhanced ductility and toughness in an ultrahigh-strength Mn-Si-Cr-C steel: The great potential of ultrafine filmy retained austenite [J]. Acta Mater., 2014, 76: 425 | [91] | https://www.ssab.cn/products/brands/armox | [92] | Grujicic M, Arakere A, Ramaswami S, et al. Gas metal arc welding process modeling and prediction of weld microstructure in MIL A46100 armor-grade martensitic steel [J]. J. Mater. Eng. Perform., 2013, 22: 1541 | [93] | https://www.bisalloy.com.au/Products/BISALLOYARMOURSTEEL.aspx | [94] | El-Mahallawi I, Abdel-Karim R, Naguib A. Evaluation of effect of chromium on wear performance of high manganese steel [J]. Mater. Sci. Technol., 2001, 17: 1385 | [95] | Luo L J. Overview of high strength wear resistant steel production abroad [J]. Wide Heavy Plate, 2008, 14(3): 46 | [95] | 罗丽军. 国外高强度耐磨钢生产概述 [J]. 宽厚板, 2008, 14(3): 46 | [96] | Wang J. Study on impact abrasive wear performance of high strength toughness wea-resistant steel plate [D]. Kunming: Kunming University of Science and Technology, 2017 | [96] | 王 军. 高强高韧性耐磨钢板的冲击磨料磨损性能研究 [D]. 昆明: 昆明理工大学, 2017 | [97] | Mao S L, Shui H Y, Chen S S, et al. Microstructures and properties of Cr26 high chromium cast iron and its heat treatment [J]. Foundry Technol., 2011, 32: 1230 | [97] | 毛双亮, 水恒勇, 陈闪闪等. Cr26型高铬铸铁组织性能及其热处理工艺 [J]. 铸造技术, 2011, 32: 1230 | [98] | Yang M, Xiong J, Guo Z X, et al. Research status of cutterhead and cutter in shield machine at home and abroad [J]. Tool Eng., 2013, 47(4): 8 | [98] | 杨 明, 熊 计, 郭智兴等. 国内外盾构机刀盘和刀具研究现状概况 [J]. 工具技术, 2013, 47(4): 8 | [99] | Zhang Z J, Zhang L, He J, et al. The status and prospect of shield cutters industry [J]. Cement. Carbide, 2015, 32: 340 | [99] | 张忠健, 张 璐, 贺 军等. 盾构刀具产业现状及发展 [J]. 硬质合金, 2015, 32: 340 | [100] | Guan H S, Gao B. Calculation for service life of cutting tools of shields [J]. Const. Mach. Equip., 2006, 37(1): 25 | [100] | 管会生, 高 波. 盾构切削刀具寿命的计算 [J]. 工程机械, 2006, 37(1): 25 | [101] | Sang W. Causes and preventive measures of cracks on fluid end of fracturing pump [J]. Petro Chem. Equip., 2013, 16(7): 51 | [101] | 桑 伟. 压裂泵液力端产生裂纹的原因及预防措施 [J]. 石油和化工设备, 2013, 16(7): 51 | [102] | Tomita Y. Improved fracture toughness of ultrahigh strength steel through control of non-metallic inclusions [J]. J. Mater. Sci., 1993, 28: 853 | [103] | Sheng X H. Production technology of 4330V forgings for deep-sea oil production equipment [P]. Chin Pat, CN201410172330.9, 2014 | [103] | (盛雪华. 深海采油装备用4330V锻件的生产工艺 [P]. 中国专利, CN201410172330.9, 2014) | [104] | Yang M, Cui M, Li Z Y, et al. Effect of tempering temperature on microstructure and mechanical properties of 42CrMo steel [J]. Modern Metall., 2019, 47(1): 4 | [104] | 杨 敏, 崔 冕, 李占阳等. 回火温度对42CrMo钢金相组织及力学性能的影响 [J]. 现代冶金, 2019, 47(1): 4 | [105] | Hua Y C, Zhao J Y, Su M R. Experimental study of fatigue fracture of fracturing pump box steel 43CrNi2MoV [J]. J. Southwest Pet. Inst., 1992, 14(4): 74 | [105] | 华寅初, 赵京艳, 苏美容. 压裂泵阀箱钢43CrNi2MoV疲劳断裂的试验研究 [J]. 西南石油学院学报, 1992, 14(4): 74 | [106] | Zhu Y S, Hu B, Luo H W. Influence of Nb and V on microstructure and mechanical properties of hot-rolled medium Mn steels [J]. Steel Res. Int., 2018, 89: 1700389 | [107] | Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review [J]. J. Mater. Sci. Technol., 2017, 33: 1457 | [108] | Avishan B, Yazdani S, Caballero F G, et al. Characterisation of microstructure and mechanical properties in two different nanostructured bainitic steels [J]. Mater. Sci. Technol., 2015, 31: 1508 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|