Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (10): 1359-1367    DOI: 10.11900/0412.1961.2018.00023
Current Issue | Archive | Adv Search |
Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens
Yefei MA1,2, Zhuman SONG2, Siqian ZHANG1, Lijia CHEN1, Guangping ZHANG2()
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Yefei MA, Zhuman SONG, Siqian ZHANG, Lijia CHEN, Guangping ZHANG. Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens. Acta Metall Sin, 2018, 54(10): 1359-1367.

Download:  HTML  PDF(6624KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Since structural components in the nuclear power plant are unable to be disassembled during their in service process, it is an urgent and key problem how to quickly and non-destructively evaluate fatigue reliability of these key structural components by using miniature specimens. Fatigue properties of miniature specimens of CA6NM martensite stainless steel for impellers in the nuclear pump were obtained by using symmetrically bending fatigue loading and uniaxial tension-tension fatigue loading, respectively. A comparison of fatigue properties between the miniature specimens and bulk specimens was conducted to examine feasibility for the evaluation of fatigue reliability of the CA6NM steel using miniature specimens. The results show that tensile strength of the 40 μm-thick CA6NM specimens is slightly higher than that of the bulk specimens, but elongation of the 40 μm-thick specimens is lower than that of the bulk counterparts. In low cycle fatigue regime, fatigue strength of the 40 μm-thick specimens subjected to uniaxial tension-tension fatigue loading is lower than that of the standard bulk counterparts. With decreasing the applied stress amplitude, the difference in fatigue properties gradually decreases, and the fatigue limit of the miniature specimen is close to that of the bulk counterparts. Fatigue strength of the 40 μm-thick specimens subjected to bending fatigue loading is much higher than that subjected to uniaxial tension-tension fatigue loading, and also higher than that of the bulk counterparts. Fatigue strength of the miniature specimens is related to the loading mode. The difference in the fatigue mechanism between the miniature specimens and the bulk counterparts is discussed, and the feasibility to evaluate fatigue reliability of the steel using miniature specimens is addressed.

Key words:  martensite stainless steel      fatigue property      miniature specimen      size effect      nuclear power material     
Received:  15 January 2018     
ZTFLH:  TG142.71  
Fund: Supported by National Natural Science Foundation of China (Nos.51771207 and 51501117)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00023     OR     https://www.ams.org.cn/EN/Y2018/V54/I10/1359

Fig.1  Schematics of three types of CA6NM martensite stainless steel specimens
(a) bulk specimen for tensile and tension-compression fatigue testing
(b) ultrathin specimen for tensile and tension-tension fatigue testing
(c) ultrathin specimen for symmetrically bending fatigue testing
Fig.2  Variation of relative resistance of cantilever beam specimen with fatigue cycles (a) and optical image on deformation morphology of the cantilever specimen under a given deflection (b) (Inset in Fig.2a is schematic of cantilever beam specimen)
Fig.3  OM (a) and TEM (b) images of CA6NM martensite stainless steels and statistical analyses of martensite lath length (c) and width (d)
Fig.4  Tensile stress-strain curves of bulk and 40 μm-thick specimens of CA6NM martensite stainless steel
Fig.5  Strain amplitude-fatigue life of 40 μm-thick cantilever specimens (a) and comparison of stress amplitude-fatigue life curves at R=0.1 of 40 μm-thick cantilever bending (CB) specimens and tension-tension (TT) specimens, tension-compression (TC) bulk specimens and bulk specimens reported in Refs. [13,25] (b) (t—thickness)
Fig.6  SEM images of fracture (a), surface damage (b) and the surface damage zone etched by FeCl3 solution (c) of ultrathin specimens subjected to bending fatigue loading at stress amplitude of 402 MPa
Fig.7  SEM images of fatigue fracture (a) and surface damage (b) of the ultrathin specimens subjected to tension-tension fatigue loading at stress amplitude of 230 MPa
Fig.8  SEM images of fatigue fracture (a), surface damage (b) and crack growth path (c) of bulk specimens subjected to TC fatigue loading at stress amplitude of 261 MPa
Fig.9  Schematics of fatigue damage behavior related to the specimen thickness of CA6NM martensitic stainless steel
(a) bulk specimen (b) miniature specimen
[1] Lu Y G, Zhu R S, Wang X L, et al.Study on gas-liquid two-phase all-characteristics of CAP1400 nuclear main pump[J]. Nucl. Eng. Des., 2017, 319: 140
[2] Li Y.Study of unsteady flow and fatigue reliability of the reactor coolant pump's impeller [D]. Shanghai: Shanghai Jiao Tong University, 2009(李颖. 核主泵叶轮非定常流场及疲劳寿命可靠性分析 [D]. 上海: 上海交通大学, 2009)
[3] Ma G J, Hu G J, Wu C W.Thermal fatigue analysis and life prediction of nuclear pump shaft surface[J]. Chin. J. Solid Mech., 2015, 36(suppl.1): 145(马国军, 胡光举, 吴承伟. 核主泵主轴表面热疲劳分析与寿命评估[J]. 固体力学学报, 2015, 36(增刊1): 145)
[4] Liu S, Li Z L, Guan Z Q.Analysis on the mechanical-thermal coupling fatigue of the primary pump shaft[J]. China Nucl. Power, 2013, 6: 22(刘松, 李姿琳, 关振群. 核主泵主轴机械-热耦合疲劳分析[J]. 中国核电, 2013, 6: 22)
[5] Trudel A, Lévesque M, Brochu M.Microstructural effects on the fatigue crack growth resistance of a stainless steel CA6NM weld[J]. Eng. Fract. Mech., 2014, 115: 60
[6] Mirakhorli F, Cao X, Pham X T, et al.Phase structures and morphologies of tempered CA6NM stainless steel welded by hybrid laser-arc process[J]. Mater. Charact., 2017, 123: 264
[7] Ma S Y, Chen R, He X C, et al.Shot peening induced strengthening of the surface layer of martensite stainless Steel 0Cr13Ni4Mo[J]. Acta Metall. Sin., 2005, 41: 28(马素媛, 陈瑞, 贺笑春等. 0Cr13Ni4Mo马氏体不锈钢表层的喷丸强化[J]. 金属学报, 2005, 41: 28)
[8] Geng C W, He S S, Yu B.Development of martensitic stainless steel ZG0Cr13Ni4Mo[J]. Met. Phys. Examinat. Test., 1992, (4): 13(耿承伟, 何树生, 于波. ZG0Cr13Ni4Mo马氏体不锈钢研制[J]. 物理测试, 1992, (4): 13)
[9] Wang S X, Jia W, Wang Y L.Effect of nitrogen on mechanical properties of martensitic stainless steel 0Cr13Ni4Mo[J]. Spec. Steel, 2001, 22(5): 23(王淑霞, 贾伟, 王毓麟. 氮对0Cr13Ni4 Mo马氏体不锈钢机械性能的影响[J]. 特殊钢, 2001, 22(5): 23)
[10] Zhang T, Gao Y P, Tian F, et al.Failure analysis on fracture of 0Cr13Ni4Mo stainless steel shaft of a steam feed pump in a power unit[J]. Phys. Test. Chem. Anal.(Phys. Test.), 2015, 51: 725(张涛, 高云鹏, 田峰等. 电站汽动给水泵0Cr13Ni4Mo不锈钢主轴断裂失效分析[J]. 理化检验(物理分册), 2015, 51: 725)
[11] Cai Q K, Song B, Gao W Q, et al.Hydrogen-induced failure of 0Cr13Ni4Mo casting steel by aquatic corrosion-fatigue[J]. J. Northeast Univ. Technol., 1987, (2): 202(才庆魁, 宋斌, 高文清等. ZG0Cr13Ni4Mo钢在水介质中腐蚀疲劳过程的氢致开裂分析[J]. 东北工学院学报, 1987, (2): 202)
[12] Gao Y K, Yin Y F, Li X B.Influence of surface integrity on fatigue property for martensite stainless steel[J]. Heat Treat. Met., 2002, 27(8): 30(高玉魁, 殷源发, 李向斌. 表面完整性对马氏体不锈钢疲劳性能的影响[J]. 金属热处理, 2002, 27(8): 30)
[13] Winck L B, Ferreira J L A, Araujo J A, et al. Surface nitriding influence on the fatigue life behavior of ASTM A743 steel type CA6NM[J]. Surf. Coat. Technol., 2013, 232: 844
[14] Da Silva B L, Oliveira F, Araújo J A, et al. The effect of mean stress on the fatigue behavior of ASTM A743 CA6NM alloy steel [A]. 20th International Congress of Mechanical Engineering[C]. RS: Gramado, 2009: 1
[15] Dymá?ek P.Recent developments in small punch testing: Applications at elevated temperatures[J]. Theor. Appl. Fract. Mec., 2016, 86: 25
[16] Zhang B, Lei L M, Yang J, et al.Fatigue properties of titanium alloy thin foils for MEMS applications[J]. Mater. Lett., 2012, 89: 302
[17] Zhang B, Song Z M, Lei L M, et al.Geometrical scale-sensitive fatigue properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloys with α/β lamellar microstructures[J]. J. Mater. Sci. Technol., 2014, 30: 1284
[18] Zhang G P, Takashima K, Higo Y.Size effects on deformation and fatigue behavior of a micron-sized stainless steel[J]. Acta Metall. Sin., 2005, 41: 337(张广平, 高岛和希, 肥後矢吉. 微米尺寸不锈钢的形变与疲劳行为的尺寸效应[J]. 金属学报, 2005, 41: 337)
[19] Zhang G P, Takashima K, Shimojo M, et al.Fatigue behavior of microsized austenitic stainless steel specimens[J]. Mater. Lett., 2003, 57: 1555
[20] Zhang G P, Wang Z G.Progress in fatigue of small dimensional materials[J]. Acta Metall. Sin., 2005, 41: 1(张广平, 王中光. 小尺度材料的疲劳研究进展[J]. 金属学报, 2005, 41: 1)
[21] Li H X, Bo C Y, Yang B.Study on repairing process of casting defects for martensitic stainless steel turbine blade[J]. Foundry Eng., 2015, (5): 27(李红霞, 柏长友, 杨保. 马氏体不锈钢水轮机叶片铸造缺陷修补工艺的研究[J]. 铸造工程, 2015, (5): 27)
[22] Dai C Y, Zhang G P, Yan C.Size effects on tensile and fatigue behaviour of polycrystalline metal foils at the micrometer scale[J]. Philos. Mag., 2011, 91: 932
[23] Xu J.Fatigue behavior of FCC-structured metals at micron scales: Effects of length scale and strain gradient [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2014(徐进. 微米尺度面心立方金属疲劳行为研究: 尺寸与应变梯度效应 [D]. 沈阳: 中国科学院金属研究所, 2014)
[24] Suresh S.Fatigue of Materials [M]. 2nd Ed., London: Cambridge University Press, 1998: 161
[25] Da Silva B L, De Oliveira F, Sá M V C, et al. Characterization of ASTM A743 CA6NM alloy steel used in hydrogenator components [A]. 21th International Congress of Mechanical Engineering[C]. Natal, RN: Natal, 2007: 1
[26] Weiss B, Gr?ger V, Khatibi G, et al.Characterization of mechanical and thermal properties of thin Cu foils and wires[J]. Sen. Actuators, 2002, 99A: 172
[27] Demir E, Raabe D.Mechanical and microstructural single-crystal Bauschinger effects: Observation of reversible plasticity in copper during bending[J]. Acta Mater., 2010, 58: 6055
[28] Geers M G D, Brekelmans W A M, Janssen P J M. Size effects in miniaturized polycrystalline FCC samples: Strengthening versus weakening[J]. Int. J. Solids Struct., 2006, 43: 7304
[29] Fleck N A, Muller G M, Ashby M F, et al.Strain gradient plasticity: Theory and experiment[J]. Acta Metall. Mater., 1994, 42: 475
[30] Huang K Z, Qiu X M, Jiang H Q.Recent advances in strain gradient plasticity-II—Mechanism-based strain gradient (MSG) plasticity[J]. J. Mech. Strength, 1999, 21: 161(黄克智, 邱信明, 姜汉卿. 应变梯度理论的新进展(二)——基于细观机制的MSG应变梯度塑性理论[J]. 机械强度, 1999, 21: 161)
[31] Fleck N A, Hutchinson J W.A Phenomenological theory for strain gradient effects in plasticity[J]. J. Mech. Phys. Solids, 1993, 41: 1825
[32] Yang J.Mechanical properties of microstructure units in lamellar structured α+β titanium alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2017(杨佳. 片层组织α+β钛合金结构单元的力学性能研究 [D]. 沈阳: 中国科学院金属研究所, 2017)
[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[3] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[4] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[5] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[6] XU Wei,HUANG Minghao,WANG Jinliang,SHEN Chunguang,ZHANG Tianyu,WANG Chenchong. Review: Relations Between Metastable Austenite and Fatigue Behavior of Steels[J]. 金属学报, 2020, 56(4): 459-475.
[7] Guangping ZHANG, Honglei CHEN, Xuemei LUO, Bin ZHANG. Progress in Thermal Fatigue of Micro/Nano-ScaleMetal Conductors[J]. 金属学报, 2018, 54(3): 357-366.
[8] Zhefeng ZHANG, Rui LIU, Zhenjun ZHANG, Yanzhong TIAN, Peng ZHANG. Exploration on the Unified Model for Fatigue Properties Prediction of Metallic Materials[J]. 金属学报, 2018, 54(11): 1693-1704.
[9] Rui YANG,Yan PAN,Wei CHEN,Qiaoyan SUN,Lin XIAO,Jun SUN. DEFORMATION BEHAVIOR AND THE MECHANISM OF MICRO-SCALE Ti-10V-2Fe-3Al PILLARSIN COMPRESSION[J]. 金属学报, 2016, 52(2): 135-142.
[10] Jun SUN, Jinyu ZHANG, Kai WU, Gang LIU. SIZE EFFECTS ON THE DEFORMATION AND DAMAGEOF Cu-BASED METALLIC NANOLAYEREDMICRO-PILLARS[J]. 金属学报, 2016, 52(10): 1249-1258.
[11] Zhisheng WANG, Xiang CHEN, Yanxiang LI, Huawei ZHANG, Yuan LIU. EFFECTS OF B ON HIGH TEMPERATURE MECHA-NICAL PROPERTIES AND THERMAL FATIGUE BEHAVIOR OF COPPER DIE-CASTING DIE STEEL[J]. 金属学报, 2015, 51(5): 519-526.
[12] YANG Jinxia, SUN Yuan, JIN Tao, SUN Xiaofeng, HU Zhuangqi. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A Ni-BASED SUPERALLOY WITH REFINED GRAINS[J]. 金属学报, 2014, 50(7): 839-844.
[13] ZHANG Yanbin, ZHANG Limin, ZHANG Jiwang, ZENG Jing. EFFECT OF ANODIZING TREATMENT ON BENDING FATIGUE PROPERTIES OF 2014-T6 ALUMINIUM ALLOY[J]. 金属学报, 2014, 50(6): 715-721.
[14] DENG Liping, YANG Xiaofang, HAN Ke, SUN Zeyuan, LIU Qing. STUDY ON THE MICROSTRUCTURE EVOLUTION OF Cu-Nb COMPOSITE WIRES DURING DEFORMATION AND ANNEALING[J]. 金属学报, 2014, 50(2): 231-237.
[15] HUANG Xiaoxu. SIZE EFFECTS ON THE STRENGTH OF METALS[J]. 金属学报, 2014, 50(2): 137-140.
No Suggested Reading articles found!