Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (12): 1592-1604    DOI: 10.11900/0412.1961.2020.00141
Current Issue | Archive | Adv Search |
Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study
ZHU Jian1, ZHANG Zhihao1,2(), XIE Jianxin1,2
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Key Laboratory for Advanced Materials Processing (MOE), University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

ZHU Jian, ZHANG Zhihao, XIE Jianxin. Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study. Acta Metall Sin, 2020, 56(12): 1592-1604.

Download:  HTML  PDF(6221KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fatigue failure caused by crack propagation is one of the main failure modes of H13 die steel. Because H13 die steel is mainly used under operational conditions involving high-pressure cycling or high friction, its crack initiation and propagation behavior play a critical role in fatigue failure. However, to the best of the authors' knowledge, few reports on the direct observation of deformation and crack propagation behavior of H13 die steel exist, which limits the understanding of the fracture mechanism of H13 die steel. In this work, an in situ TEM tensile study combined with post-mortem EBSD analysis was employed to investigate the microstructure evolution and crack propagation behavior of rare earth (RE) H13 steel. Results indicate that the stress concentration at the grain boundaries and coarse granular inclusions in the tensile specimen were the main sources of crack initiation. After crack initiation and during the tensile process, many cracks converged into the main crack. The main crack propagated along the direction perpendicular to the tensile direction, exhibiting zigzag-shaped features. The stress distribution in the area near a crack in a specimen was heterogeneous; the length fraction of V1/V2 inter-variant boundaries in the relatively high-stress area increased from 56.5% to 58.8% compared with the relatively low-stress area, and the length fraction of V1/V3&V5 inter-variant boundaries increased from 16.3% to 21.6%. The increase in the length fraction of V1/V2 inter-variant boundaries indicated an increase in the twin martensite fraction, which effectively relieved the stress concentration at the grain boundaries and reduced crack initiation. During the tensile process, the austenite retained at the grain boundaries underwent stress-induced phase transformation and was partially transformed into V1/V2 and V1/V3&V5 variant pairs. The dislocation propagation in martensite contributed to dislocation pile-up at high-angle grain boundaries and carbide precipitation. Moreover, the dislocation pile-up at the high-angle grain boundaries promoted the stress-induced phase transformation of the retained austenite.

Key words:  rare earth H13 steel      fracture mechanism      in situ TEM tension      parent austenite orientation reconstruction      martensite variant     
Received:  06 May 2020     
ZTFLH:  TG11  
Fund: National Key Research and Development Program of China(2016YFB0300900);National Natural Science Foundation of China-Liaoning Joint Fund(U1708251)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00141     OR     https://www.ams.org.cn/EN/Y2020/V56/I12/1592

Fig.1  Shape and size of in situ tensile specimen (Circle in the middle of specimen shows the location of central double-jet electropolishing perforation)
Fig.2  Bright-field (a, c) and dark-field (b, d) TEM images of rare earth H13 steel specimen after heat treatment (RA—retained austenite. Insets in Figs.2b and d show the selected area electron diffraction (SAED) patterns)
Fig.3  Bright-field TEM images of the fine structure of rare earth H13 steel specimen after heat treatment (GBs—grain boundaries)
Fig.4  TEM images showing crack morphologies of in situ tensile specimen of rare earth H13 steel (TD—tensile direction, FD—fracture direction)
Fig.5  TEM images showing the microstructure evolutions of in situ tensile specimen of rare earth H13 steel during tensile process when tensile displacement increased from 48.3 μm to 110.7 μm (a~f), respectively
Fig.6  TEM images of area near main crack of in situ tensile specimen of rare earth H13 steel
Fig.7  SEM images of main crack and selected area post-mortem EBSD analyses near crack edge of in situ tensile specimen of rare earth H13 steel
Fig.8  Post-mortem EBSD analyses of selected areas G1 (b~d) and G2 (e~g) near main crack of in situ tensile specimen of rare earth H13 steel
Fig.9  Orientation distributions of martensite and parent austenite of selected areas G1 (a~c) and G2 (d~f) in Fig.8a near main crack of in situ tensile specimen of rare earth H13 steel
Fig.10  Orientation reconstruction results of martensite and parent austenite of selected areas G1 (a~c) and G2 (d~f) near main crack of in situ tensile specimen of rare earth H13 steel (green line: block boundary, red line: packet boundary, black line: parent austenite grain boundary, PAGB)
Fig.11  Post-mortem EBSD data calculation results of selected areas G1 (a~c) and G2 (d~f) near main crack of in situ tensile specimen of rare earth H13 steel (black line: PAGB, white line: 5°<θ<15°, red line:15°≤θ≤45°, green line: θ>45°, color bars of Figs.11c and f show indexes of variant numbers, insets in Figs.11c and f show the indexed variants)
Fig.12  Length fractions of inter-variant boundaries for selected areas G1 and G2 near main crack of in situ tensile specimen of rare earth H13 steel
[1] Klobčar D, Tušek J, Taljat B. Thermal fatigue of materials for die-casting tooling [J]. Mater. Sci. Eng., 2008, A472: 198
[2] Zhou Q C, Wu X C, Shi N N, et al. Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering [J]. Mater. Sci. Eng., 2011, A528: 5696
[3] Srivastava A, Joshi V, Shivpuri R, et al. A multi-layer coating architecture to reduce heat checking of die surfaces [J]. Surf. Coat. Technol., 2003, 163-164: 631
doi: 10.1016/S0257-8972(02)00690-4
[4] Zhang M L, Xing S M, Xin Q, et al. Abnormal failure analysis of H13 punches in steel squeeze casting process [J]. J. Iron Steel Res. Int., 2008, 15: 47
doi: 10.1016/S1006-706X(08)60124-7
[5] Sjöströ J, Bergström J. Thermal fatigue in hot-working tools [J]. Scand. J. Metall., 2005, 34: 221
doi: 10.1111/sjm.2005.34.issue-4
[6] Delagnes D, Rézaï-Aria F, Levaillant C. Influence of testing and tempering temperatures on fatigue behaviour, life and crack initiation mechanisms in a 5%Cr martensitic steel [J]. Procedia Eng., 2010, 2: 427
doi: 10.1016/j.proeng.2010.03.047
[7] Meng C, Zhou H, Tong X, et al. Comparison of thermal fatigue behaviour and microstructure of different hot work tool steels processed by biomimetic couple laser remelting process [J]. Mater. Sci. Technol., 2013, 29: 496
doi: 10.1179/1743284712Y.0000000169
[8] Oliver E C, Withers P J, Daymond M R, et al. Neutron-diffraction study of stress-induced martensitic transformation in TRIP steel [J]. Appl. Phys., 2002, 74A: S1143
[9] Frommeyer G, Brüx U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes [J]. ISIJ Int., 2003, 43: 438
doi: 10.2355/isijinternational.43.438
[10] Van Slycken J, Verleysen P, Degrieck J, et al. High-strain-rate behavior of low-alloy multiphase aluminum- and silicon-based transformation-induced plasticity steels [J]. Metall. Mater. Trans., 2006, 37A: 1527
[11] Dong H, Cao W Q, Shi J, et al. Microstructure and performance control technology of the 3rd generation auto sheet steels [J]. Iron Steel, 2011, 46(6): 1
(董 瀚, 曹文全, 时 捷等. 第3代汽车钢的组织与性能调控技术 [J]. 钢铁, 2011, 46(6): 1)
[12] Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content [J]. Acta Mater., 2015, 84: 229
doi: 10.1016/j.actamat.2014.10.052
[13] Wang R M, Liu J L, Song Y J. Progress and applications of in situ transmission electron microscopy [J]. Physics, 2015, 44: 96
doi: 10.7693/wl20150205
(王荣明, 刘家龙, 宋源军. 原位透射电子显微学进展及应用 [J]. 物理, 2015, 44: 96)
[14] Mompiou F, Caillard D, Legros M, et al. In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium [J]. Acta Mater., 2012, 60: 3402
doi: 10.1016/j.actamat.2012.02.049
[15] Voisin T, Krywopusk N M, Mompiou F, et al. Precipitation strengthening in nanostructured AZ31B magnesium thin films characterized by nano-indentation, STEM/EDS, HRTEM, and in situ TEM tensile testing [J]. Acta Mater., 2017, 138: 174
doi: 10.1016/j.actamat.2017.07.050
[16] Legros M, Gianola D S, Hemker K J. In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films [J]. Acta Mater., 2008, 56: 3380
doi: 10.1016/j.actamat.2008.03.032
[17] Manchuraju S, Kroeger A, Somsen C, et al. Pseudoelastic deformation and size effects during in situ transmission electron microscopy tensile testing of NiTi [J]. Acta Mater., 2012, 60: 2770
doi: 10.1016/j.actamat.2012.01.043
[18] Yao T T, Du K, Wang H L, et al. In situ scanning and transmission electron microscopy investigation on plastic deformation in a metastable β titanium alloy [J]. Acta Mater., 2017, 133: 21
doi: 10.1016/j.actamat.2017.05.018
[19] Zárubová N, Gemperlová J, Gemperle A, et al. In situ TEM observation of stress-induced martensitic transformations and twinning processes in CuAlNi single crystals [J]. Acta Mater., 2010, 58: 5109
doi: 10.1016/j.actamat.2010.05.046
[20] Zhong Y, Xiao F R, Zhang J W, et al. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel [J]. Acta Mater., 2006, 54: 435
doi: 10.1016/j.actamat.2005.09.015
[21] Beausir B, Fressengeas C, Gurao N P, et al. Spatial correlation in grain misorientation distribution [J]. Acta Mater., 2009, 57: 5382
doi: 10.1016/j.actamat.2009.07.035
[22] Stormvinter A, Miyamoto G, Furuhara T, et al. Effect of carbon content on variant pairing of martensite in Fe-C alloy [J]. Acta Mater., 2012, 60: 7265
doi: 10.1016/j.actamat.2012.09.046
[23] Takayama N, Miyamoto G, Furuhara T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel [J]. Acta Mater., 2012, 60: 2387
doi: 10.1016/j.actamat.2011.12.018
[24] Wang X L. Study on welding physical metallurgy behavior of high performance offshore engineering steel [D]. Beijing: University of Science and Technology Beijing, 2018
(王学林. 高性能海洋工程用钢焊接物理冶金行为研究 [D]. 北京: 北京科技大学, 2018)
[25] Wang X L, Wang Z Q, Dong L L, et al. New insights into the mechanism of cooling rate on the impact toughness of coarse grained heat affected zone from the aspect of variant selection [J]. Mater. Sci. Eng., 2017, A704: 448
[26] Bachmann F, Hielscher R, Schaeben H. Texture analysis with MTEX-free and open source software toolbox [J]. Solid State Phenom., 2010, 160: 63
doi: 10.4028/www.scientific.net/SSP.160
[27] Nyyssönen T, Peura P, Kuokkala V T. Crystallography, morphology, and martensite transformation of prior austenite in intercritically annealed high-aluminum steel [J]. Metall. Mater. Trans., 2018, 49A: 6426
[28] Chen Q Z, Chu W Y, Wang B Y, et al. In situ TEM observations of nucleation and bluntness of nano cracks in thin crystals of 310 stainless steel [J]. Acta Metall. Mater., 1995, 43: 4371
doi: 10.1016/0956-7151(95)00122-C
[29] Zhang Y, Chu W Y, Wang Y B, et al. TEM observation of brittle microcrack nucleation of intermetallic compounds [J]. Sci. China, 1994, 24A: 551
(张 跃, 褚武扬, 王燕斌等. 金属间化合物脆性微裂纹形核的TEM观察 [J]. 中国科学, 1994, 24A: 551)
[30] Gao K W, Chen Q Z, Chu W Y, et al. Nucleation and propagation of microcracks in nanoscale cleavage [J]. Sci. China, 1994, 24A: 993
(高克玮, 陈奇志, 褚武扬等. 纳米级解理微裂纹的形核和扩展 [J]. 中国科学, 1994, 24A: 993)
[31] Chen Q Z, Chu W Y, Xiao J M. In situ observation and study of nucleation of ductile microcracks [J]. Sci. China, 1994, 24A: 291
(陈奇志, 褚武扬, 肖纪美. 韧断微裂纹形核的原位观察与研究 [J]. 中国科学, 1994, 24A: 291)
[32] Huang W K, Kong F Y. Microstructure and mechanical property of cold drawn high strength 00Cr18Ni10N stainless steel wire [J]. Acta Metall. Sin., 2009, 45: 275
(黄文克, 孔凡亚. 冷拔高强00Cr18Ni10N不锈钢丝显微组织与力学性能 [J]. 金属学报, 2009, 45: 275)
[33] Choi H, Lee S, Lee J, et al. Characterization of fracture in medium Mn steel [J]. Mater. Sci. Eng., 2017, A687: 200
[34] Li H F, Wang S G, Zhang P, et al. Crack propagation mechanisms of AISI 4340 steels with different strength and toughness [J]. Mater. Sci. Eng., 2018, A729: 130
[35] Lubarda V A, Schneider M S, Kalantar D H, et al. Void growth by dislocation emission [J]. Acta Mater., 2004, 52: 1397
doi: 10.1016/j.actamat.2003.11.022
[36] Li S C, Zhu G M, Kang Y L. Effect of substructure on mechanical properties and fracture behavior of lath martensite in 0.1C-1.1Si-1.7Mn steel [J]. J. Alloys Compd., 2016, 675: 104
doi: 10.1016/j.jallcom.2016.03.100
[37] Guo Z, Sha W, Vaumousse D. Microstructural evolution in a PH13-8 stainless steel after ageing [J]. Acta Mater., 2003, 51: 101
doi: 10.1016/S1359-6454(02)00353-1
[38] Wang X L, Wang Z Q, Ma X P, et al. Analysis of impact toughness scatter in simulated coarse-grained HAZ of E550 grade offshore engineering steel from the aspect of crystallographic structure [J]. Mater. Charact., 2018, 140: 312
doi: 10.1016/j.matchar.2018.03.037
[39] Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater., 2003, 51: 1789
doi: 10.1016/S1359-6454(02)00577-3
[40] Rancel L, Gómez M, Medina S F, et al. Measurement of bainite packet size and its influence on cleavage fracture in a medium carbon bainitic steel [J]. Mater. Sci. Eng., 2011, A530: 21
[41] Morito S, Saito H, Ogawa T. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels [J]. ISIJ Int., 2005, 45: 91
doi: 10.2355/isijinternational.45.91
[42] Morris J W, Lee C S, Guo Z. The nature and consequences of coherent transformations in steel [J]. ISIJ Int., 2003, 43: 410
doi: 10.2355/isijinternational.43.410
[43] Wang J L, Madsen G K H, Drautz R. Grain boundaries in bcc-Fe: A density-functional theory and tight-binding study [J]. Modell. Simul. Mater. Sci. Eng., 2018, 26: 025008
doi: 10.1088/1361-651X/aa9f81
[44] Lambert-Perlade A, Gourgues A F, Pineau A. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel [J]. Acta Mater., 2004, 52: 2337
doi: 10.1016/j.actamat.2004.01.025
[45] Wang S H, Li J, Ge X, et al. Microstructural evolution and work hardening behavior of Fe-19Mn alloy containing duplex austenite and ε-martensite [J]. Acta Metall. Sin., 2020, 56: 311
(王世宏, 李 健, 葛 昕等. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为 [J]. 金属学报, 2020, 56: 311)
[1] Anhua LI, Yueming ZHANG, Haibo FENG, Ning ZOU, Zhongshan Lü, Xujie ZOU, Wei LI. Mechanical Properties of Sintered Ce-Fe-B Magnets[J]. 金属学报, 2017, 53(11): 1478-1486.
[2] Xueda LI,Chengjia SHANG,Changchai HAN,Yuran FAN,Jianbo SUN. INFLUENCE OF NECKLACE-TYPE M-A CONSTITU-ENT ON IMPACT TOUGHNESS AND FRACTUREMECHANISM IN THE HEAT AFFECTED ZONE OF X100 PIPELINE STEEL[J]. 金属学报, 2016, 52(9): 1025-1035.
[3] Zaoyu SHEN,Limin HE,Guanghong HUANG,Rende MU,Jinwang GU,Weizhong LIU. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF TiAl/Ti3Al MULTI-LAYERED COMPOSITE[J]. 金属学报, 2016, 52(12): 1579-1585.
[4] Xu ZHANG, Yumin WANG, Qing YANG, Jiafeng LEI, Rui YANG. STUDY ON TENSILE BEHAVIOR OF SiCf/TC17 COMPOSITES[J]. 金属学报, 2015, 51(9): 1025-1037.
[5] Jun XIE,Jinjiang YU,Xiaofeng SUN,Tao JIN,Yanhong YANG. INFLUENCE OF TEMPERATURE ON TENSILE BEHAVIORS OF K416B Ni-BASED SUPERALLOY WITH HIGH W CONTENT[J]. 金属学报, 2015, 51(8): 943-950.
[6] XU Demei, QIN Gaowu, LI Feng, WANG Zhanhong, ZHONG Jingming, LI Zhinian, HE Lijun. TENSILE DEFORMATION AND FRACTURE BEHAVIOR OF POLYCRYSTALLINE BERYLLIUM AT ROOM TEMPERATURE[J]. 金属学报, 2014, 50(9): 1078-1086.
[7] JIE Jinchuan, ZOU Chunming, WANG Hongwei, WEI Zunjie. MECHANICAL BEHAVIOR OF Al-20Mg ALLOY SOLIDIFIED UNDER HIGH PRESSURE[J]. 金属学报, 2014, 50(8): 971-978.
[8] . [J]. 金属学报, 2007, 43(10): 1025-1030 .
[9] CHEN Rongshi;GUO Jianting;YIN Weimin;ZHOU Jiyang (Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)(Department of Materials Engineering; Dalian University of Technology;Dalian 116023). INVESTIGATION ON MICROSTRUCTURE AND SUPERPLASTICITY OF A NiAL-BASED MULTIPHASE ALLOY[J]. 金属学报, 1998, 34(11): 1121-1125.
[10] LI Hongqi; CHEN Qizhi; CHU Wuyang(University of Science and Technology Beijing; Beijing 100083). IN SITU TEM OBSERVATION OF NUCLEATING AND PROPAGATING OF MICROCRACKS IN STAINLESS STEEL UNDER TENSION[J]. 金属学报, 1996, 32(11): 1159-1164.
[11] ZHANG Ji;ZHANG Zhihong;ZOU Dunxu;ZHONG Zengyong(Central Iron and Steel Research Institute;Ministry of Metallurgical Industry;Beijing 100081)(Manuscript received 1995-12-25)(Department 5;Central Iron and Steel Research Institute;MMI;BeiJing 100081). FRACTURE MECHANISMS OF FFL MICROSTRUCTURE IN TiAl ALLOY[J]. 金属学报, 1996, 32(10): 1044-1048.
[12] WANG Zidong; HU Hanqi (University of Science and Technology Beijing; Beijing 100083); LI Chunyu; LIU Baicao (Beijing Institute of Aeronautical Materials ; 100095)(Manuscript received 94-07-25). CONCEPT AND FABRICATION OF METAL MATRIX INTRAGRANULAR COMPOSITES[J]. 金属学报, 1995, 31(13): 40-43.
[13] XING Zhiqiang; CHENG Yongmei(Beijing Polytechnic University;100022);CHU Wuyang(University of Science and Technology Beijing; 100083)(Manuscript received 94-03-10;in revised form 94-07-19). LOW-FREQUENCY FATIGUE OF TWO Ti_3Al INTERMETALLICS IN DISTILLED WATER[J]. 金属学报, 1995, 31(1): 34-39.
[14] YANG Yang;ZHANG Xinming(Central-South University of Technology; Changsha); LI Zhenghua; LI Qingyun(North-West Institute for Nonferrous Metal Research; Baoji)(Manuscript received 13 December;1993). IN SITU SEM OBSERVATION ON MICROFRACTURE OF TA2/A3 EXPLOSION CLADDING INTERFACE[J]. 金属学报, 1994, 30(9): 409-415.
[15] SHEN Guangjun;WANG shidong;ZHANG Jinping Lab. of Solid State Microstructure; Nanjing University; Analysis and Testing Centre; Southeast University; Nanjing Correspindent Analysis and testing Centre; Southeast University; Nanjing; 210018. TEM STUDY OF TWINNING ORIENTATION RELATIOSHIP BETWEEN A AND B MARTENSITE VARIANTS IN CuZnAl SHAPE MEMORY ALLOY[J]. 金属学报, 1992, 28(6): 13-18.
No Suggested Reading articles found!