Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (7): 725-730    DOI:
Current Issue | Archive | Adv Search |
THE SECOND PHASE STRENGTHENING AND TOUGHENING EFFECT IN HIGH HARDNESS STEEL WELDS
REN Dengyi; DONG Jian; ZHANG Yuanbin(Colledge of Materials Science and Engineering; Shandong University of Technology; Jinan 250061)
Cite this article: 

REN Dengyi; DONG Jian; ZHANG Yuanbin(Colledge of Materials Science and Engineering; Shandong University of Technology; Jinan 250061). THE SECOND PHASE STRENGTHENING AND TOUGHENING EFFECT IN HIGH HARDNESS STEEL WELDS. Acta Metall Sin, 1998, 34(7): 725-730.

Download:  PDF(2053KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The feature of carbide and microstructure of matrix and their effect on toughness are studied in high carbon welds where Nb, Ti, V, Zr, RE coedest. Test results indicated that the synthetic effect of the multiple strong carbide elements and RE element leads to precipitate fine carbides before solidification of welds. The main mechanism of precipitating carbides from liquid phase is multiple direction precipitating at the same core. The contents of strong carbide elements and carbon element accorded with the fixed-ratio theorem, that made the matrix " carbon poor", and formed low carbon martensite. A weld with high hardness and good thoughness was achieved.
Key words:  carbide      high carbon alloy-steel weld      toughness      hardfacing welding     
Received:  18 July 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I7/725

1 周振丰.焊接冶金学(金属焊接性).北京:机械工业出版社,1995:170,171 (Zhou Zhenfeng.Welding Metallurgy( The Weldability of Metal). Beijing: The Publishing House of Mechanical Industry, 1995: 170, 171)
2 Doyen P S, Skrabec Q R. Weld J, 1981; 9: 25
3 Murphy Jim. Welded Fabr, 1987; 5: 18
4 张小诚,张卫平焊接学报,1994;15:177(Zhang Xiaocheng, Zhang Weiping Trans Chin Weld Inst, 1994; 15: 177)
5 张文钺.焊接冶金学(基本原理).北京:机械工业出版社,1995:69(Zhang Wenyue. Welding Metallurgy (Fundamental)、Beijing: The Publishing House of Mechanical Industry, 1995:69)
6 余宗森,褚幼义,贺信莱,杜国维,高佩钰,朱逢吾.钢中稀土.北京:冶金工业出版社,1982:123,129(Yu Zongsen,Chu Youyi,He Xinlai;Du Guowei,Gao Peiyu,Zhu Fengwu.Rare Earths in Steels.Beijing:The Metallurgical Industry Press,1982:123,129)
7 肖纪美.高速钢的金属学问题北京:冶金工业出版社,1976:46(Xiao Jimei.The Metallographical Problems of High Speed Steel.Beijing:The Metallurgical Industry Press,1976:46)9
[1] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[2] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[3] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[4] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[5] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[6] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[7] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[8] ZHOU Cheng, ZHAO Tan, YE Qibin, TIAN Yong, WANG Zhaodong, GAO Xiuhua. Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel[J]. 金属学报, 2022, 58(12): 1557-1569.
[9] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[10] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[11] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[12] YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. 金属学报, 2021, 57(11): 1455-1470.
[13] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[14] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[15] YANG Ke,LIANG Ye,YAN Wei,SHAN Yiyin. Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels[J]. 金属学报, 2020, 56(1): 53-65.
No Suggested Reading articles found!