Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (12): 1557-1569    DOI: 10.11900/0412.1961.2021.00147
Research paper Current Issue | Archive | Adv Search |
Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel
ZHOU Cheng1, ZHAO Tan2(), YE Qibin3(), TIAN Yong1, WANG Zhaodong1, GAO Xiuhua1
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2.State Key Laboratory of Metal Material for Marine Equipment and Application, Ansteel Group Corporation, Anshan 114009, China
3.Institute of Research of Iron and Steel, Sha-Steel, Zhangjiagang 215625, China
Cite this article: 

ZHOU Cheng, ZHAO Tan, YE Qibin, TIAN Yong, WANG Zhaodong, GAO Xiuhua. Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel. Acta Metall Sin, 2022, 58(12): 1557-1569.

Download:  HTML  PDF(4430KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The low carbon alloyed steel has been widely used in the shipbuilding and offshore structures owing to its high strength and toughness at low temperatures. To optimize the microstructure and mechanical properties of low carbon alloyed steel as well as investigate the relationship between them, this study focuses on the microstructure evolution and corresponding mechanical properties of a 1000 MPa grade NiCrMoV low carbon alloyed steel during tempering in the range of 450-650oC. Microstructures of lath martensite and autotempered martensite were obtained after hot rolling followed by direct water cooling to room temperature. The evolution of lath martensite and retained austenite on tempering was characterized using SEM and TEM. The distribution of the retained austenite was investigated using EBSD. The result shows that when the tempering temperature of the NiCrMoV low carbon alloyed steel is increased from 450oC to 550oC, the lath martensite recovers and the martensite-austenite component gradually decomposes. The retained austenite with 4.8% volume fraction was obtained after tempering at 600oC. The NiCrMoV low carbon alloyed steel obtained intercritical ferrite and fresh martensite when tempered at 650oC. The reverse transformation process of austenite was analyzed through a dilatometer curve. The partition behavior of alloying elements C, Ni, and Mn during intercritical tempering was analyzed kinetically through DICTRA simulation. An appropriate fraction of thermally stable retained austenite obtained at 600oC was attributed to the extent of partitioning of C, Ni, and Mn into the reversed austenite, which contributed to the best balance of strength-ductility-toughness properties. After direct quenching and tempering at 600oC, high yield strength of 1030 MPa with a high ductility of 18%, low yield to tensile ratio of 0.93, and excellent low-temperature toughness of 160 J at -80oC were obtained.

Key words:  low carbon alloyed steel      tempering temperature      low-temperature toughness      microstructure     
Received:  07 April 2021     
ZTFLH:  TG142.1  
Fund: Major Research and Development Project of Liaoning Province(2020JH1/10100001);State Key Laboratory of Metal Material for Marine Equipment and Application
About author:  ZHAO Tan, senior engineer, Tel: (0412)6721020, E-mail: ansteel_zhaotan@163.com
YE Qibin, senior engineer, Tel: (0512)58953958, E-mail: yeqb-iris@shasteel.cn;

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00147     OR     https://www.ams.org.cn/EN/Y2022/V58/I12/1557

Fig.1  Schematic of hot rolling and heat treatment process of NiCrMoV low carbon alloyed steel (Ac1 and Ac3 are defined as the start and finish temperatures of martensite to austenite transformation during the heating process, respectively)
Fig.2  SEM images of the NiCrMoV low carbon alloyed steel under direct quenching (DQ) (a) and tempered at 450oC (b), 500oC (c), 550oC (d), 600oC (e), and 650oC (f) (M-A: martensite-austenite)
Fig.3  TEM images of the NiCrMoV low carbon alloyed steel tempered at 450oC (a), 500oC (b), 550oC (c), 600oC (d, e), and 650oC (f) (Inset in Fig.3e shows the selected area election diffraction (SAED) pattern of retained austenite)
Fig.4  XRD spectra (a) and volume fraction of retained austenite (b) in the NiCrMoV low carbon alloyed steel tempered at different temperatures
Fig.5  EBSD images of retained austenite of the NiCrMoV low carbon alloyed steel tempered at 600oC (a) and 650oC (b)
Fig.6  Tensile properties of the NiCrMoV low carbon alloyed steel under DQ and tempered at different temperatures
(a) tensile stress-strain curves (b) work hardening curves
(c) strength (YS—yield strength, UTS—ultimate tensile strength)
(d) yield to tensile ratio (e) total elongation
Fig.7  Impact energies of the NiCrMoV low carbon alloyed steel tempered at different temperatures (a) and yield strength comparisons with other[6,8,17-19] low carbon alloyed steels (b)
Fig.8  SEM images of impact fracture morphologies of the NiCrMoV low carbon alloyed steel impact specimens tempered at 450oC (a), 500oC (b), 550oC (c), 600oC (d), and 650oC (e)
Fig.9  Dilatometer curves of the NiCrMoV low carbon alloyed steel during tempering at 600 and 650oC
(a) dilatation-temperature curve (Ms—start temperature of martensite transformation)
(b) dilatation-time curve
(c) relative change in dilatation curves
Fig.10  Alloying element partitioning process of the NiCrMoV low carbon alloyed steel in two-phase region tempering by DICTRA simulation
(a) dimensional model of partitioning process
(b) evolution of reversed austenite volume fraction (NPLE—negligible partition local equilibrium, PLE—partition local equilibrium)
(c) C distribution
(d) Ni distribution
(e) Mn distribution
Fig.11  TEM image (a) and corresponding EDS result (b) of precipitates of the NiCrMoV low carbon alloyed steel tempered at 500oC
Fig.12  XRD spectra of the NiCrMoV low carbon alloyed steel tempered at 600oC before and after impact test
1 Klemm-Toole J, Benz J, Thompson S W, et al. A quantitative evaluation of microalloy precipitation strengthening in martensite and bainite [J]. Mater. Sci. Eng., 2019, A763: 138145
2 Zhang G H, Cheng L, Li Y, et al. Progress on marine corrosion resistant steels [J]. Mater. China, 2014, 33: 426
张国宏, 成林, 李钰 等. 海洋耐蚀钢的国内外进展 [J]. 中国材料进展, 2014, 33: 426
3 Abdollah-Zadeh A, Belbasy M. Effects of Mn and Cu on the mechanical properties of a high strength low alloy NiCrMoV steel [J]. J. Mater. Sci. Technol., 2005, 21: 470
4 Salemi A, Abdollah-Zadeh A. The effect of tempering temperature on the mechanical properties and fracture morphology of a NiCrMoV steel [J]. Mater. Charact., 2008, 59: 484
doi: 10.1016/j.matchar.2007.02.012
5 Lu J, Yu H, Yang S F. Mechanical behavior of multi-stage heat-treated HSLA steel based on examinations of microstructural evolution [J]. Mater. Sci. Eng., 2021, A803: 140493
6 Zhang X J. Microhardness characterisation in developing high strength, high toughness and superior ballistic resistance low carbon Ni steel [J]. Mater. Sci. Technol., 2012, 28: 818
doi: 10.1179/1743284712Y.0000000015
7 Chen Q Y, Ren J K, Xie Z L, et al. Correlation between reversed austenite and mechanical properties in a low Ni steel treated by ultra-fast cooling, intercritical quenching and tempering [J]. J. Mater. Sci., 2020, 55: 1840
doi: 10.1007/s10853-019-04029-y
8 Dhua S K, Mukerjee D, Sarma D S. Influence of tempering on the microstructure and mechanical properties of HSLA-100 steel plates [J]. Metall. Mater. Trans., 2001, 32A: 2259
9 Hou W, Liu Q D, Gu J F. Nano-sized austenite and Cu precipitates formed by using intercritical tempering plus tempering and their effect on the mechanical property in a low carbon Cu bearing 7 Ni steel [J]. Mater. Sci. Eng., 2020, A780: 139186
10 Liu D S, Cheng B G, Chen Y Y. Strengthening and toughening of a heavy plate steel for shipbuilding with yield strength of approximately 690 MPa [J]. Metall. Mater. Trans., 2013, 44A: 440
11 Otani K, Muraoka H, Tsuruta S, et al. Development of ultraheavy-gauge (210 mm thick) 800 N/mm2 tensile strength plate steel for racks of jack-up rigs [J]. Nippon Steel Tech. Rep., 1993, 58: 1
12 Dhua S K, Ray A, Sarma D S. Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels [J]. Mater. Sci. Eng., 2001, A318: 197
13 Kim J I, Morris J W. The composition of precipitated austenite in 5.5Ni steel [J]. Metall. Mater. Trans., 1981, 12A: 1957
14 Saastamoinen A, Kaijalainen A, Nyo T T, et al. Direct-quenched and tempered low-C high-strength structural steel: The role of chemical composition on microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A760: 346
15 Xie Z J, Shang C J, Wang X L, et al. Microstructure-property relationship in a low carbon Nb-B bearing ultra-high strength steel by direct-quenching and tempering [J]. Mater. Sci. Eng., 2018, A727: 200
16 Hu J, Du L X, Dong Y, et al. Effect of Ti variation on microstructure evolution and mechanical properties of low carbon medium Mn heavy plate steel [J]. Mater. Charact., 2019, 152: 21
doi: 10.1016/j.matchar.2019.04.004
17 Jain D, Isheim D, Hunter A H, et al. Multicomponent high-strength low-alloy steel precipitation-strengthened by sub-nanometric Cu precipitates and M2C carbides [J]. Metall. Mater. Trans., 2016, 47A: 3860
18 Zou Y, Xu Y B, Hu Z P, et al. High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite [J]. Mater. Sci. Eng., 2017, A707: 270
19 Wang M, Liu Z Y, Li C G. Correlations of Ni contents, formation of reversed austenite and toughness for Ni-containing cryogenic steels [J]. Acta Metall. Sin. (Engl. Lett.)., 2017, 30: 238
doi: 10.1007/s40195-016-0496-9
20 Kuzmina M, Ponge D, Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt.% medium Mn steel [J]. Acta Mater., 2015, 86: 182
doi: 10.1016/j.actamat.2014.12.021
21 Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review [J]. J. Mater. Sci. Technol., 2017, 33: 1457
doi: 10.1016/j.jmst.2017.06.017
22 Zou Y, Xu Y B, Wang G, et al. Improved strength-ductility-toughness balance of a precipitation-strengthened low-carbon medium-Mn steel by adopting intercritical annealing-tempering process [J]. Mater. Sci. Eng., 2021, A802: 140636
23 Wang D C, Cai Q W, Yu W, et al. Tempering microstructure and mechanical properties of an ultra high strength bainitic steel [J]. Trans. Mater. Heat Treat., 2013, 34(5): 143
万德成, 蔡庆伍, 余伟 等. 超高强贝氏体钢的回火组织与力学性能 [J]. 材料热处理学报, 2013, 34(5): 143
24 Srivatsa K, Srinivas P, Balachandran G, et al. Room temperature microstructure and property evaluation of a heat treated fully bainitic 20CrMoVTiB410 steel [J]. JOM, 2016, 68: 2704
doi: 10.1007/s11837-016-2063-2
25 Lee S, De Cooman B C. Annealing temperature dependence of the tensile behavior of 10 pct Mn multi-phase TWIP-TRIP steel [J]. Metall. Mater. Trans., 2014, 45A: 6039
26 Seo E J, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel [J]. Acta Mater., 2016, 113: 124
doi: 10.1016/j.actamat.2016.04.048
27 Han J B, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel [J]. Acta Mater., 2014, 78: 369
doi: 10.1016/j.actamat.2014.07.005
28 Cao W Q, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing [J]. Mater. Sci. Eng., 2011, A528: 6661
29 Wang Z H, Hui W J, Xie Z Q, et al. Effects of tempering temperature on microstructure and mechanical properties of a Mn-Cr type bainitic forging steel [J]. Acta Metall. Sin., 2020, 56: 1441
doi: 10.11900/0412.1961.2020.00139
王占花, 惠卫军, 谢志奇 等. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响 [J]. 金属学报, 2020, 56: 1441
doi: 10.11900/0412.1961.2020.00139
30 Li Z J, Xiao N M, Li D Z, et al. Influence of microstructure on impact toughness of G18CrMo2-6 steel during tempering [J]. Acta Metall. Sin., 2014, 50: 777
doi: 10.3724/SP.J.1037.2013.00747
李振江, 肖纳敏, 李殿中 等. G18CrMo2-6钢回火组织及冲击韧性研究 [J]. 金属学报, 2014, 50: 777
doi: 10.3724/SP.J.1037.2013.00747
31 Yan P, Liu Z D, Bao H S, et al. Effect of tempering temperature on the toughness of 9Cr-3W-3Co martensitic heat resistant steel [J]. Mater. Des., 2014, 54: 874
doi: 10.1016/j.matdes.2013.09.017
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!