Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (1): 53-65    DOI: 10.11900/0412.1961.2019.00146
Overview Current Issue | Archive | Adv Search |
Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels
YANG Ke1,LIANG Ye1,2,YAN Wei1,3(),SHAN Yiyin1,3
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(4425KB) 
Export:  BibTeX | EndNote (RIS)      

Addition of small amount of boron (B) in the (9~12)%Cr martensitic heat resistant steels can obviously prohibit the Ostwald ripening of M23C6 carbides so as to improve creep strength as well as creep rupture life. With the purpose of taking full advantages of B element, it is critical to make B preferentially distribute in (9~12)%Cr martensitic heat resistant steels. The mechanism of B preventing M23C6 carbides from ripening is also on the premise of clearly identifying the preferential distribution of B in the steels. Much concern has been growing over the preferential distribution of B in the research of (9~12)%Cr martensitic heat resistant steels. Therefore, this article gives a review on this aspect. Following a summary of the effect of B on mechanical properties, several commonly used characterizing methods for B segregation in the steels are introduced. Based on the physical metallurgy and the solution, diffusion mechanisms of B element, discussions on the preferential distribution of B element at prior austenite grain boundaries and in the M23C6 carbides as well as the related factors are emphasized. At last, two prevalent mechanisms of B restraining the coarsening of M23C6 carbides in (9~12)%Cr martensitic heat resistant steels are given by an intensive explanation so that the relationship between the preferential distribution of B and its advantage of increasing creep performance by suppressing the ripening M23C6 carbides are systematically elaborated, which gives a deep understanding of the role of B element in (9~12)%Cr martensitic heat resistant steels.

Key words:  martensitic heat resistant steel      B      segregation      M23C6 carbide      Ostwald ripening     
Received:  06 May 2019     
ZTFLH:  TG142.1  
Fund: National Key Research and Development Program of China(2017YFB0305201);National Natural Science Foundation of China(51971226)
Corresponding Authors:  Wei YAN     E-mail:

Cite this article: 

YANG Ke,LIANG Ye,YAN Wei,SHAN Yiyin. Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels. Acta Metall Sin, 2020, 56(1): 53-65.

URL:     OR

Fig.1  Distributions of B (a), V (b) and Cr (c) in G115 heat resistant steel after normalizing at 1100 ℃ for 1 h and tempering at 780 ℃ for 3 h
Fig.2  Boron distributions in G115 steel after normalizing at 1100 ℃ for 1 h and tempering at 780 ℃ for 3 h (a) and ageing at 650 ℃ (b), 700 ℃ (c) and 750 ℃ (d) for 1000 h
Fig.3  TEM image showing coarsed M23C6 carbide in G115 heat resistant steel after ageing at 700 ℃ for 1000 h
Fig.4  3-D reconstruction of a data set obtained by APT analysis on a M23C6 carbide distributed at prior austenite grain boundaries[8]
Fig.5  Schematic of M23(CB)6 formation process during heat treatment[10](a) nomalizing temperature 1100 ℃(b) tempering temperature 800 ℃ (G.B.—grainboundary)
Fig.6  Schematic mechanism of B restraining the Ostwald ripening of M23C6 carbides[9]
[1] Liu Z D, Cheng S C, Bao H S, et al. Localization of boiler steel technology in China used for ultra super critical power plants [J]. Iron Steel, 2009, 44(6): 1
[1] (刘正东, 程世长, 包汉生等. 超超临界火电机组用锅炉钢技术国产化问题 [J]. 钢铁, 2009, 44(6): 1)
[2] Li W W. Research on the mechanism design and evaluation method of power coal supply chain's coordination under uncertainty conditions [D]. Harbin: Harbin Institute of Technology, 2016
[2] (李巍巍. 不确定条件下电煤供应链协调的机制设计及评价方法研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016)
[3] Shu G G, Liu J N, Shi C Z, et al. Microstructure, Mechanical Properties and Engineering Application of T/P91 Heat Resistant Steel for Supercritical Power Plants [M]. Xi'an: Shanxi Science and Technology Press, 2006: 9
[3] (束国刚, 刘江南, 石崇哲等. 超临界锅炉用T/P91钢的组织性能与工程应用 [M]. 西安: 陕西科学技术出版社, 2006: 9)
[4] Msuyama F. History of power plants and progress in heat resistant steels [J]. ISIJ Int., 2001, 41: 612
[5] Maruyama K, Sawada K, Koike J I. Strengthening mechanisms of creep resistant tempered martensitic steel [J]. ISIJ Int., 2001, 41: 641
[6] Abe F. Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 ℃ and above [J]. Engineering, 2015, 1: 211
[7] Yan P, Liu Z D, Bao H S, et al. Effect of normalizing temperature on the strength of 9Cr-3W-3Co martensitic heat resistant steel [J]. Mater. Sci. Eng., 2014, A597: 148
[8] Liu F, Fors D H R, Golpayegani A, et al. Effect of boron on carbide coarsening at 873 K (600 ℃) in 9 to 12 pct chromium steels [J]. Metall. Mater. Trans., 2012, 43A: 4053
[9] Abe F. Behavior of boron in 9Cr heat resistant steel during heat treatment and creep deformation [J]. Key Eng. Mater., 2007, 345-346: 569
[10] Abe F. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants [J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
[11] Abe F. Effect of boron on microstructure and creep strength of advanced ferritic power plant steels [J]. Procedia Eng., 2011, 10: 94
[12] Titova T I, Shulgan N A, Malykhina I Y. Effect of boron microalloying on the structure and hardenability of building steel [J]. Met. Sci. Heat Treat., 2007, 49: 39
[13] Grange R A, Garvey T M. Factors affecting the hardenability of boron-treated steels [J]. Trans. Am. Soc. Met., 1946, 37: 136
[14] Maitrepierre P, Thivellier D, Tricot R. Influence of boron on the decomposition of austenite in low carbon alloyed steels [J]. Metall. Mater. Trans., 1975, 6A: 287
[15] Hwang B, Suh D W, Kim S J. Austenitizing temperature and hardenability of low-carbon boron steels [J]. Scr. Mater., 2011, 64: 1118
[16] Karlsson L, Nordén H, Odelius H. Non-equilibrium grain boundary segregation of boron in austenitic stainless steel—I. Large scale segregation behaviour [J]. Acta Metall., 1988, 36: 1
[17] Asahi H. Effects of Mo addition and austenitizing temperature on hardenability of low alloy B-added steels [J]. ISIJ Int., 2002, 42: 1150
[18] Li X L. The segregations of boron and niobium at grain boundaries in microalloyed steel and high-purity nickel [D]. Beijing: University of Science and Technology Beijing, 2017
[18] (李向龙. 硼、铌元素在微合金钢与高纯镍中的晶界偏聚行为 [D]. 北京: 北京科技大学, 2017)
[19] Kapadia B M. Effect of boron additions on the toughness of heat-treated low-alloy steels [J]. J. Heat Treat., 1987, 5: 41
[20] Ghali S N, El-Faramawy H S, Eissa M M. Influence of boron additions on mechanical properties of carbon steel [J]. J. Miner. Mater. Charact. Eng., 2012, 11: 995
[21] Yan P, Liu Z D, Bao H S, et al. Effect of microstructural evolution on high-temperature strength of 9Cr-3W-3Co martensitic heat resistant steel under different aging conditions [J]. Mater. Sci. Eng., 2013, A588: 22
[22] Shirzadi A, Jackson S. Structural Alloys for Power Plants [M]. Cambridge: Woodhead Publishing, 2014: 250
[23] Golpayegani A, Liu F, Svensson H, et al. Microstructure of a creep-resistant 10 pct chromium steel containing 250 ppm boron [J]. Metall. Mater. Trans., 2011, 42A: 940
[24] H?ttestrand M, Andrén H O. Boron distribution in 9-12% chromium steels [J]. Mater. Sci. Eng., 1999, A270: 33
[25] Mayr P, Martín F M, Albu M, et al. Correlation of creep strength and microstructural evolution of a boron alloyed 9Cr3W3CoVNb steel in as-received and welded condition [J]. Mater. High Temp., 2010, 27: 67
[26] Horiuchi T, Igarashi M, Abe F. Improved utilization of added B in 9Cr heat-resistant steels containing W [J]. ISIJ Int., 2002, 42(Suppl.1) S67
[27] Mayr P, Holzer I, Mendez-Martin F, et al. Experience with 9Cr3W3CoVNbBN base material and crosswelds at 650 ℃ for implementation in USC power plants [A]. 3rd Symposium on Heat Resistant Steels and Alloys for High Efficiency USC Power Plants [C]. Tsukuba, Japan: National Institute for Materials Science, 2009: 1
[28] Albu M, Mayr P, Martín F M, et al. The influence of boron on the microstructure of a 9 wt% Cr ferritic steel [J]. Mater. High Temp., 2011, 28: 120
[29] Lejcek P. Grain Boundary Segregation in Metals [M]. Berlin: Springer-Verlag Berlin and Heidelberg, 2010: 27
[30] Shigesato G, Fujishiro T, Hara T. Grain boundary segregation behavior of boron in low-alloy steel [J]. Metall. Mater. Trans., 2014, 45A: 1876
[31] He X L, Chu Y Y, Zhang X L, et al. The distribution of boron in steel [J]. Acta Metall. Sin., 1979, 13: 235
[31] (贺信莱, 诸幼义, 张秀林等. 硼在钢中的分布 [J]. 金属学报, 1979, 13: 235)
[32] Jahazi M, Jonas J J. The non-equilibrium segregation of boron on original and moving austenite grain boundaries [J]. Mater. Sci. Eng., 2002, A335: 49
[33] Li W Q, Sun J Y, Xu H X, et al. Application of fission track etching method for study carburized boron steels [J]. Iron Steel, 1992, 27(6): 42
[33] (李文卿, 孙继跃, 许洪新等. 显微径迹照相技术在渗碳硼钢研究中的应用 [J]. 钢铁, 1992, 27(6): 42)
[34] Yin H T, Wang J. SIMS analysis technology and the applied research [J]. Chin. J. Spectrosc. Lab., 2008, 25: 180
[34] (尹会听, 王 洁. 二次离子质谱分析技术及应用研究 [J]. 光谱实验室, 2008, 25: 180)
[35] Li Y J, Ponge D, Choi P, et al. Atomic scale investigation of non-equilibrium segregation of boron in a quenched Mo-free martensitic steel [J]. Ultramicroscopy, 2015, 159: 240
[36] Yong Q L. Secondary Phases in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 167
[36] (雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 167)
[37] Li P S, Xiao L J, Xie Z. Thermodynamic analysis of AlN and BN competitive precipitation in low carbon steel [J]. J. Iron Steel Res., 2009, 21(5): 16
[37] (李培松, 肖丽俊, 谢 植. 低碳钢中AlN和BN竞相析出热力学分析 [J]. 钢铁研究学报, 2009, 21(5): 16)
[38] Klimenkov M, Materna-Morris E, M?slang A. Boron effect on the microstructure of 9%Cr ferritic-martensitic steels [J]. J. Nucl. Mater., 2015, 462: 280
[39] Busby P E, Wells C. Diffusion of boron in alpha iron [J]. JOM, 1954, 6(9): 972
[40] Wang W D, Zhang S H, He X L. Diffusion of boron in alloys [J]. Acta Metall. Mater., 1995, 43: 1693
[41] Hayashi Y, Sugeno T. Nature of boron in α-iron [J]. Acta Metall., 1970, 18: 693
[42] Fors D H R, Wahnstr?m G. Nature of boron solution and diffusion in α-iron [J]. Phys. Rev., 2008, 77B: 132102
[43] Bialon A F, Hammerschmidt T, Drautz R. Ab initio study of boron in α-iron: Migration barriers and interaction with point defects [J]. Phys. Rev., 2013, 87B: 104109
[44] McLellan R B, Ko C. The diffusion of boron in f.c.c. iron [J]. J. Phys. Chem. Solids, 1993, 54: 465
[45] Busby P E, Warga M E, Wells C. Diffusion and solubility of boron in iron and steel [J]. JOM, 1953, 5(11): 1463
[46] Zhang X, Li X L, Wu P, et al. First principles calculation of boron diffusion in fcc-Fe [J]. Curr. Appl. Phys., 2018, 18: 1108
[47] Takahashi J, Ishikawa K, Kawakami K, et al. Atomic-scale study on segregation behavior at austenite grain boundaries in boron- and molybdenum-added steels [J]. Acta Mater., 2017, 133: 41
[48] Hondros E D, Seah M R, Hofmann S, et al. Physical Metallurgy [M]. 4th Ed., Amsterdam: North-Holland, 1996: 1201
[49] Williams T M, Stoneham A M, Harries D R. The segregation of boron to grain boundaries in solution-treated Type 316 austenitic stainless steel [J]. Met. Sci., 1976, 10: 14
[50] Xu T D, Cheng B Y. Kinetics of non-equilibrium grain-boundary segregation [J]. Prog. Mater. Sci., 2004, 49: 109
[51] Li Y J, Ponge D, Choi P, et al. Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography [J]. Scr. Mater., 2015, 96: 13
[52] Mun D J, Shin E J, Cho K C, et al. Cooling rate dependence of boron distribution in low carbon steel [J]. Metall. Mater. Trans., 2012, 43A: 1639
[53] Miyamoto G, Goto A, Takayama N, et al. Three-dimensional atom probe analysis of boron segregation at austenite grain boundary in a low carbon steel—Effects of boundary misorientation and quenching temperature [J]. Scr. Mater., 2018, 154: 168
[54] Zhu H Y, Sun J, Wang W, et al. Experimental investigation on segregation and remelting behaviors of boron-containing steel with low carbon [J]. Results Phys., 2019, 12: 67
[55] Chu Y Y, He X L, Tang L, et al. Two kinds of boron segregation at austenite grain boundaries [J]. Acta Metall. Sin., 1987, 23: 169
[55] (褚幼义, 贺信莱, 唐 立等. 硼在奥氏体晶界的两类偏聚 [J]. 金属学报, 1987, 23: 169)
[56] Aust K T, Hanneman R E, Niessen P, et al. Solute induced hardening near grain boundaries in zone refined metals [J]. Acta Metall., 1968, 16: 291
[57] Zhang S H, He X L, Chu Y Y, et al. Behaviour of boron segregation to grain boundaries in bcc Fe-3%Si alloy [J]. Acta Metall. Sin., 1993, 29(6): 1
[57] (章三红, 贺信莱, 褚幼义等. 硼在体心立方Fe-3%Si合金中的晶界偏聚行为 [J]. 金属学报, 1993, 29(6): 1)
[58] Brailsford A D, Bullough R. The rate theory of swelling due to void growth in irradiated metals [J]. J. Nucl. Mater., 1972, 44: 121
[59] Simpson C J, Aust K T, Winegard W C. The formation of Pb2Au precipitates at high velocity grain boundaries after quenching [J]. Metall. Mater. Trans., 1970, 1B: 1482
[60] Watanabe S, Ohtani H, Kunitake T. The Influence of hot rolling and heat treatments on the distribution of boron in steel [J]. Trans. Iron Steel Ins. Jpn., 1983, 23: 31
[61] Gay A S, Fraczkiewicz A, Biscondi M. Mechanisms of the intergranular segregation of boron in (B2) FeAl alloys [J]. Mater. Sci. Forum, 1999, 294-296: 453
[62] Xu T D. Non-equilibrium grain-boundary segregation kinetics [J]. J. Mater. Sci., 1987, 22: 337
[63] Wang H, Yan W, van Zwaag S, et al. On the 650 ℃ thermostability of 9-12Cr heat resistant steels containing different precipitates [J]. Acta Mater., 2017, 134: 143
[64] Hald J. Microstructure and long-term creep properties of 9-12% Cr steels [J]. Int J. Pressure Vessels Piping, 2008, 85: 30
[65] Umantsev A, Olson G B. Ostwald ripening in multicomponent alloys [J]. Scr. Metall. Mater., 1993, 29: 1135
[66] Abe F. Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels [J]. Mater. Sci. Eng., 2004, A387-389: 565
[67] Takahashi N, Fujita T, Yamada T. Effect of boron on long period creep rupture strength of 12%Cr heat resisting steel [J]. Tetsu Hagané, 1975, 61: 2263
[67] (高橋 紀雄, 藤田 利夫, 山田 武海. 12%Cr耐熱鋼の長時間クリープ破断強度におよぼすBの影響 [J]. 鉄と鋼, 1975, 61: 2263)
[68] H?ttestrand M, Schwind M, Andrén H O. Microanalysis of two creep resistant 9-12% chromium steels [J]. Mater. Sci. Eng., 1998, A250: 27
[69] Lundin L, F?llman S, Andrén H O. Microstructure and mechanical properties of a 10% chromium steel with improved creep resistance at 600 ℃ [J]. Mater. Sci. Technol., 1997, 13: 233
[1] HUANG Songpeng, PENG Can, CAO Gongwang, WANG Zhenyao. Corrosion Behavior of Copper-Nickel Alloys Protected by BTA in Simulated Urban Atmosphere[J]. 金属学报, 2021, 57(3): 317-326.
[2] WANG Xiaobo, WANG Yongzhe, CHENG Xudong, JIANG Rong. Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air[J]. 金属学报, 2021, 57(3): 327-339.
[3] YANG Lipo, ZHANG Hailong, ZHANG Yongshun. Present Analysis and Trend Prediction of Shape/ Performance Collaborative Control for High-End Cold Rolling Foils[J]. 金属学报, 2021, 57(3): 295-308.
[4] QIAN Yi, YUAN Guangyin. Research Status, Challenges, and Countermeasures of Biodegradable Zinc-Based Vascular Stents[J]. 金属学报, 2021, 57(3): 272-282.
[5] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[6] LI Yuxing, LIU Xinghao, WANG Cailin, HU Qihui, WANG Jinghan, MA Hongtao, ZHANG Nan. Research Progress on Corrosion Behavior of Gaseous CO2 Transportation Pipelines Containing Impurities[J]. 金属学报, 2021, 57(3): 283-294.
[7] WU Yucheng, GAO Zhiqiang, XU Guangqing, LIU Jiaqin, XUAN Haicheng, LIU Youhao, YI Xiaofei, CHEN Jingwu, HAN Peide. Current Status and Challenges in Corrosion and Protection Strategies for Sintered NdFeB Magnets[J]. 金属学报, 2021, 57(2): 171-181.
[8] LIU Yue, TANG Pengzheng, YANG Kunming, SHEN Yiming, WU Zhongguang, FAN Tongxiang. Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. 金属学报, 2021, 57(2): 150-170.
[9] GAO Yihan, LIU Gang, SUN Jun. Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy[J]. 金属学报, 2021, 57(2): 129-149.
[10] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[11] LI Xiaoqian, WANG Fuguo, LIANG Aimin. Effect of Spraying Process on Microstructure and Tribological Properties of Ta2O5 In Situ Composite Nanocrystalline Ta-Based Coatings[J]. 金属学报, 2021, 57(2): 237-246.
[12] ZHU Yuping, Naicheng SHENG, XIE Jun, WANG Zhenjiang, XUN Shuling, YU Jinjiang, LI Jinguo, YANG Lin, HOU Guichen, ZHOU Yizhou, SUN Xiaofeng. Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B[J]. 金属学报, 2021, 57(2): 215-223.
[13] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[14] WANG Luning, LIU Lijun, YAN Yu, YANG Kun, LU Lili. Influences of Protein Adsorption on the in vitro Corrosion of Biomedical Metals[J]. 金属学报, 2021, 57(1): 1-15.
[15] WANG Mingkang, YUAN Junhao, LIU Yufeng, WANG Qing, DONG Chuang, ZHANG Zhongwei. Effect of Ti on β Structural Stability and Mechanical Properties of Zr-Nb Binary Alloys[J]. 金属学报, 2021, 57(1): 95-102.
No Suggested Reading articles found!