Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (1): 53-65    DOI: 10.11900/0412.1961.2019.00146
Overview Current Issue | Archive | Adv Search |
Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels
YANG Ke1,LIANG Ye1,2,YAN Wei1,3(),SHAN Yiyin1,3
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

YANG Ke,LIANG Ye,YAN Wei,SHAN Yiyin. Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels. Acta Metall Sin, 2020, 56(1): 53-65.

Download:  HTML  PDF(4425KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Addition of small amount of boron (B) in the (9~12)%Cr martensitic heat resistant steels can obviously prohibit the Ostwald ripening of M23C6 carbides so as to improve creep strength as well as creep rupture life. With the purpose of taking full advantages of B element, it is critical to make B preferentially distribute in (9~12)%Cr martensitic heat resistant steels. The mechanism of B preventing M23C6 carbides from ripening is also on the premise of clearly identifying the preferential distribution of B in the steels. Much concern has been growing over the preferential distribution of B in the research of (9~12)%Cr martensitic heat resistant steels. Therefore, this article gives a review on this aspect. Following a summary of the effect of B on mechanical properties, several commonly used characterizing methods for B segregation in the steels are introduced. Based on the physical metallurgy and the solution, diffusion mechanisms of B element, discussions on the preferential distribution of B element at prior austenite grain boundaries and in the M23C6 carbides as well as the related factors are emphasized. At last, two prevalent mechanisms of B restraining the coarsening of M23C6 carbides in (9~12)%Cr martensitic heat resistant steels are given by an intensive explanation so that the relationship between the preferential distribution of B and its advantage of increasing creep performance by suppressing the ripening M23C6 carbides are systematically elaborated, which gives a deep understanding of the role of B element in (9~12)%Cr martensitic heat resistant steels.

Key words:  martensitic heat resistant steel      B      segregation      M23C6 carbide      Ostwald ripening     
Received:  06 May 2019     
ZTFLH:  TG142.1  
Fund: National Key Research and Development Program of China(2017YFB0305201);National Natural Science Foundation of China(51971226)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00146     OR     https://www.ams.org.cn/EN/Y2020/V56/I1/53

Fig.1  Distributions of B (a), V (b) and Cr (c) in G115 heat resistant steel after normalizing at 1100 ℃ for 1 h and tempering at 780 ℃ for 3 h
Fig.2  Boron distributions in G115 steel after normalizing at 1100 ℃ for 1 h and tempering at 780 ℃ for 3 h (a) and ageing at 650 ℃ (b), 700 ℃ (c) and 750 ℃ (d) for 1000 h
Fig.3  TEM image showing coarsed M23C6 carbide in G115 heat resistant steel after ageing at 700 ℃ for 1000 h
Fig.4  3-D reconstruction of a data set obtained by APT analysis on a M23C6 carbide distributed at prior austenite grain boundaries[8]
Fig.5  Schematic of M23(CB)6 formation process during heat treatment[10](a) nomalizing temperature 1100 ℃(b) tempering temperature 800 ℃ (G.B.—grainboundary)
Fig.6  Schematic mechanism of B restraining the Ostwald ripening of M23C6 carbides[9]
[1] Liu Z D, Cheng S C, Bao H S, et al. Localization of boiler steel technology in China used for ultra super critical power plants [J]. Iron Steel, 2009, 44(6): 1
[1] (刘正东, 程世长, 包汉生等. 超超临界火电机组用锅炉钢技术国产化问题 [J]. 钢铁, 2009, 44(6): 1)
[2] Li W W. Research on the mechanism design and evaluation method of power coal supply chain's coordination under uncertainty conditions [D]. Harbin: Harbin Institute of Technology, 2016
[2] (李巍巍. 不确定条件下电煤供应链协调的机制设计及评价方法研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016)
[3] Shu G G, Liu J N, Shi C Z, et al. Microstructure, Mechanical Properties and Engineering Application of T/P91 Heat Resistant Steel for Supercritical Power Plants [M]. Xi'an: Shanxi Science and Technology Press, 2006: 9
[3] (束国刚, 刘江南, 石崇哲等. 超临界锅炉用T/P91钢的组织性能与工程应用 [M]. 西安: 陕西科学技术出版社, 2006: 9)
[4] Msuyama F. History of power plants and progress in heat resistant steels [J]. ISIJ Int., 2001, 41: 612
[5] Maruyama K, Sawada K, Koike J I. Strengthening mechanisms of creep resistant tempered martensitic steel [J]. ISIJ Int., 2001, 41: 641
[6] Abe F. Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 ℃ and above [J]. Engineering, 2015, 1: 211
[7] Yan P, Liu Z D, Bao H S, et al. Effect of normalizing temperature on the strength of 9Cr-3W-3Co martensitic heat resistant steel [J]. Mater. Sci. Eng., 2014, A597: 148
[8] Liu F, Fors D H R, Golpayegani A, et al. Effect of boron on carbide coarsening at 873 K (600 ℃) in 9 to 12 pct chromium steels [J]. Metall. Mater. Trans., 2012, 43A: 4053
[9] Abe F. Behavior of boron in 9Cr heat resistant steel during heat treatment and creep deformation [J]. Key Eng. Mater., 2007, 345-346: 569
[10] Abe F. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants [J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
[11] Abe F. Effect of boron on microstructure and creep strength of advanced ferritic power plant steels [J]. Procedia Eng., 2011, 10: 94
[12] Titova T I, Shulgan N A, Malykhina I Y. Effect of boron microalloying on the structure and hardenability of building steel [J]. Met. Sci. Heat Treat., 2007, 49: 39
[13] Grange R A, Garvey T M. Factors affecting the hardenability of boron-treated steels [J]. Trans. Am. Soc. Met., 1946, 37: 136
[14] Maitrepierre P, Thivellier D, Tricot R. Influence of boron on the decomposition of austenite in low carbon alloyed steels [J]. Metall. Mater. Trans., 1975, 6A: 287
[15] Hwang B, Suh D W, Kim S J. Austenitizing temperature and hardenability of low-carbon boron steels [J]. Scr. Mater., 2011, 64: 1118
[16] Karlsson L, Nordén H, Odelius H. Non-equilibrium grain boundary segregation of boron in austenitic stainless steel—I. Large scale segregation behaviour [J]. Acta Metall., 1988, 36: 1
[17] Asahi H. Effects of Mo addition and austenitizing temperature on hardenability of low alloy B-added steels [J]. ISIJ Int., 2002, 42: 1150
[18] Li X L. The segregations of boron and niobium at grain boundaries in microalloyed steel and high-purity nickel [D]. Beijing: University of Science and Technology Beijing, 2017
[18] (李向龙. 硼、铌元素在微合金钢与高纯镍中的晶界偏聚行为 [D]. 北京: 北京科技大学, 2017)
[19] Kapadia B M. Effect of boron additions on the toughness of heat-treated low-alloy steels [J]. J. Heat Treat., 1987, 5: 41
[20] Ghali S N, El-Faramawy H S, Eissa M M. Influence of boron additions on mechanical properties of carbon steel [J]. J. Miner. Mater. Charact. Eng., 2012, 11: 995
[21] Yan P, Liu Z D, Bao H S, et al. Effect of microstructural evolution on high-temperature strength of 9Cr-3W-3Co martensitic heat resistant steel under different aging conditions [J]. Mater. Sci. Eng., 2013, A588: 22
[22] Shirzadi A, Jackson S. Structural Alloys for Power Plants [M]. Cambridge: Woodhead Publishing, 2014: 250
[23] Golpayegani A, Liu F, Svensson H, et al. Microstructure of a creep-resistant 10 pct chromium steel containing 250 ppm boron [J]. Metall. Mater. Trans., 2011, 42A: 940
[24] H?ttestrand M, Andrén H O. Boron distribution in 9-12% chromium steels [J]. Mater. Sci. Eng., 1999, A270: 33
[25] Mayr P, Martín F M, Albu M, et al. Correlation of creep strength and microstructural evolution of a boron alloyed 9Cr3W3CoVNb steel in as-received and welded condition [J]. Mater. High Temp., 2010, 27: 67
[26] Horiuchi T, Igarashi M, Abe F. Improved utilization of added B in 9Cr heat-resistant steels containing W [J]. ISIJ Int., 2002, 42(Suppl.1) S67
[27] Mayr P, Holzer I, Mendez-Martin F, et al. Experience with 9Cr3W3CoVNbBN base material and crosswelds at 650 ℃ for implementation in USC power plants [A]. 3rd Symposium on Heat Resistant Steels and Alloys for High Efficiency USC Power Plants [C]. Tsukuba, Japan: National Institute for Materials Science, 2009: 1
[28] Albu M, Mayr P, Martín F M, et al. The influence of boron on the microstructure of a 9 wt% Cr ferritic steel [J]. Mater. High Temp., 2011, 28: 120
[29] Lejcek P. Grain Boundary Segregation in Metals [M]. Berlin: Springer-Verlag Berlin and Heidelberg, 2010: 27
[30] Shigesato G, Fujishiro T, Hara T. Grain boundary segregation behavior of boron in low-alloy steel [J]. Metall. Mater. Trans., 2014, 45A: 1876
[31] He X L, Chu Y Y, Zhang X L, et al. The distribution of boron in steel [J]. Acta Metall. Sin., 1979, 13: 235
[31] (贺信莱, 诸幼义, 张秀林等. 硼在钢中的分布 [J]. 金属学报, 1979, 13: 235)
[32] Jahazi M, Jonas J J. The non-equilibrium segregation of boron on original and moving austenite grain boundaries [J]. Mater. Sci. Eng., 2002, A335: 49
[33] Li W Q, Sun J Y, Xu H X, et al. Application of fission track etching method for study carburized boron steels [J]. Iron Steel, 1992, 27(6): 42
[33] (李文卿, 孙继跃, 许洪新等. 显微径迹照相技术在渗碳硼钢研究中的应用 [J]. 钢铁, 1992, 27(6): 42)
[34] Yin H T, Wang J. SIMS analysis technology and the applied research [J]. Chin. J. Spectrosc. Lab., 2008, 25: 180
[34] (尹会听, 王 洁. 二次离子质谱分析技术及应用研究 [J]. 光谱实验室, 2008, 25: 180)
[35] Li Y J, Ponge D, Choi P, et al. Atomic scale investigation of non-equilibrium segregation of boron in a quenched Mo-free martensitic steel [J]. Ultramicroscopy, 2015, 159: 240
[36] Yong Q L. Secondary Phases in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 167
[36] (雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 167)
[37] Li P S, Xiao L J, Xie Z. Thermodynamic analysis of AlN and BN competitive precipitation in low carbon steel [J]. J. Iron Steel Res., 2009, 21(5): 16
[37] (李培松, 肖丽俊, 谢 植. 低碳钢中AlN和BN竞相析出热力学分析 [J]. 钢铁研究学报, 2009, 21(5): 16)
[38] Klimenkov M, Materna-Morris E, M?slang A. Boron effect on the microstructure of 9%Cr ferritic-martensitic steels [J]. J. Nucl. Mater., 2015, 462: 280
[39] Busby P E, Wells C. Diffusion of boron in alpha iron [J]. JOM, 1954, 6(9): 972
[40] Wang W D, Zhang S H, He X L. Diffusion of boron in alloys [J]. Acta Metall. Mater., 1995, 43: 1693
[41] Hayashi Y, Sugeno T. Nature of boron in α-iron [J]. Acta Metall., 1970, 18: 693
[42] Fors D H R, Wahnstr?m G. Nature of boron solution and diffusion in α-iron [J]. Phys. Rev., 2008, 77B: 132102
[43] Bialon A F, Hammerschmidt T, Drautz R. Ab initio study of boron in α-iron: Migration barriers and interaction with point defects [J]. Phys. Rev., 2013, 87B: 104109
[44] McLellan R B, Ko C. The diffusion of boron in f.c.c. iron [J]. J. Phys. Chem. Solids, 1993, 54: 465
[45] Busby P E, Warga M E, Wells C. Diffusion and solubility of boron in iron and steel [J]. JOM, 1953, 5(11): 1463
[46] Zhang X, Li X L, Wu P, et al. First principles calculation of boron diffusion in fcc-Fe [J]. Curr. Appl. Phys., 2018, 18: 1108
[47] Takahashi J, Ishikawa K, Kawakami K, et al. Atomic-scale study on segregation behavior at austenite grain boundaries in boron- and molybdenum-added steels [J]. Acta Mater., 2017, 133: 41
[48] Hondros E D, Seah M R, Hofmann S, et al. Physical Metallurgy [M]. 4th Ed., Amsterdam: North-Holland, 1996: 1201
[49] Williams T M, Stoneham A M, Harries D R. The segregation of boron to grain boundaries in solution-treated Type 316 austenitic stainless steel [J]. Met. Sci., 1976, 10: 14
[50] Xu T D, Cheng B Y. Kinetics of non-equilibrium grain-boundary segregation [J]. Prog. Mater. Sci., 2004, 49: 109
[51] Li Y J, Ponge D, Choi P, et al. Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography [J]. Scr. Mater., 2015, 96: 13
[52] Mun D J, Shin E J, Cho K C, et al. Cooling rate dependence of boron distribution in low carbon steel [J]. Metall. Mater. Trans., 2012, 43A: 1639
[53] Miyamoto G, Goto A, Takayama N, et al. Three-dimensional atom probe analysis of boron segregation at austenite grain boundary in a low carbon steel—Effects of boundary misorientation and quenching temperature [J]. Scr. Mater., 2018, 154: 168
[54] Zhu H Y, Sun J, Wang W, et al. Experimental investigation on segregation and remelting behaviors of boron-containing steel with low carbon [J]. Results Phys., 2019, 12: 67
[55] Chu Y Y, He X L, Tang L, et al. Two kinds of boron segregation at austenite grain boundaries [J]. Acta Metall. Sin., 1987, 23: 169
[55] (褚幼义, 贺信莱, 唐 立等. 硼在奥氏体晶界的两类偏聚 [J]. 金属学报, 1987, 23: 169)
[56] Aust K T, Hanneman R E, Niessen P, et al. Solute induced hardening near grain boundaries in zone refined metals [J]. Acta Metall., 1968, 16: 291
[57] Zhang S H, He X L, Chu Y Y, et al. Behaviour of boron segregation to grain boundaries in bcc Fe-3%Si alloy [J]. Acta Metall. Sin., 1993, 29(6): 1
[57] (章三红, 贺信莱, 褚幼义等. 硼在体心立方Fe-3%Si合金中的晶界偏聚行为 [J]. 金属学报, 1993, 29(6): 1)
[58] Brailsford A D, Bullough R. The rate theory of swelling due to void growth in irradiated metals [J]. J. Nucl. Mater., 1972, 44: 121
[59] Simpson C J, Aust K T, Winegard W C. The formation of Pb2Au precipitates at high velocity grain boundaries after quenching [J]. Metall. Mater. Trans., 1970, 1B: 1482
[60] Watanabe S, Ohtani H, Kunitake T. The Influence of hot rolling and heat treatments on the distribution of boron in steel [J]. Trans. Iron Steel Ins. Jpn., 1983, 23: 31
[61] Gay A S, Fraczkiewicz A, Biscondi M. Mechanisms of the intergranular segregation of boron in (B2) FeAl alloys [J]. Mater. Sci. Forum, 1999, 294-296: 453
[62] Xu T D. Non-equilibrium grain-boundary segregation kinetics [J]. J. Mater. Sci., 1987, 22: 337
[63] Wang H, Yan W, van Zwaag S, et al. On the 650 ℃ thermostability of 9-12Cr heat resistant steels containing different precipitates [J]. Acta Mater., 2017, 134: 143
[64] Hald J. Microstructure and long-term creep properties of 9-12% Cr steels [J]. Int J. Pressure Vessels Piping, 2008, 85: 30
[65] Umantsev A, Olson G B. Ostwald ripening in multicomponent alloys [J]. Scr. Metall. Mater., 1993, 29: 1135
[66] Abe F. Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels [J]. Mater. Sci. Eng., 2004, A387-389: 565
[67] Takahashi N, Fujita T, Yamada T. Effect of boron on long period creep rupture strength of 12%Cr heat resisting steel [J]. Tetsu Hagané, 1975, 61: 2263
[67] (高橋 紀雄, 藤田 利夫, 山田 武海. 12%Cr耐熱鋼の長時間クリープ破断強度におよぼすBの影響 [J]. 鉄と鋼, 1975, 61: 2263)
[68] H?ttestrand M, Schwind M, Andrén H O. Microanalysis of two creep resistant 9-12% chromium steels [J]. Mater. Sci. Eng., 1998, A250: 27
[69] Lundin L, F?llman S, Andrén H O. Microstructure and mechanical properties of a 10% chromium steel with improved creep resistance at 600 ℃ [J]. Mater. Sci. Technol., 1997, 13: 233
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[5] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[6] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[7] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[8] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[9] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[10] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[11] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[12] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[13] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[14] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[15] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
No Suggested Reading articles found!