|
|
Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel |
LI Shanshan1,2, CHEN Yun1( ), GONG Tongzhao1,2, CHEN Xingqiu1, FU Paixian1, LI Dianzhong1 |
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
Cite this article:
LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel. Acta Metall Sin, 2022, 58(8): 1024-1034.
|
Abstract Bearing is one of the most technologically important engineering components in machines. With the development of several advanced steel-refining technologies to suppress the detrimental effect of nonmetallic inclusions on the mechanical properties of materials, the impact of carbides on the service life of bearings has gradually highlighted. The carbides have become a key factor in determining the performance of a bearing, particularly for primary carbides formed during the solidification of high carbon-chromium bearing steel. Therefore, exploring the formation mechanism of primary carbides and their control strategies is vital to improve the manufacturing process of bearing steel as well as the service life and reliability of bearings. To clarify the formation mechanism of primary carbides and the effects of the processing technique, as well as the addition of rare earth elements, a modified type of GCr15 high carbon-chromium bearing steel with and without rare earth elements was remelted and solidified at different cooling rates. After solidification, the quantity, area, average size, and chemical composition of the primary carbide in the as-cast bearing steel were characterized and analyzed via OM, EPMA, SEM, and XRD. The results show that the type of carbide in GCr15 series bearing steel is M3C cementite with high Cr content (more than 15%, mass fraction). The nucleation rate of M3C cementite increased with the increase in the cooling rate; thus, the number of carbides increased considerably. However, at very high cooling rates, the primary austenite was refined and the diffusion time of C and Cr elements required to form carbides declined; therefore, the size of carbides was reduced significantly, resulting in more uniform dispersion of the carbides. Moreover, the addition of rare earth elements could refine the primary austenite, and subsequently, refine the carbide to some extent. Considering the properties of the primary carbides at different cooling rates, the kinetic formation mechanism for the primary carbide in high carbon-chromium bearing steel during solidification is proposed.
|
Received: 14 January 2021
|
|
Fund: National Natural Science Foundation of China(52031013);Strategic Priority Research Program of the Chinese Academy of Sciences(XDC04040202);Youth Innovation Promotion Association, Chinese Academy of Sciences |
About author: CHEN Yun, professor, Tel: (024)83970106, E-mail: chenyun@imr.ac.cn
|
1 |
Zhou W S. Study on the control of the uniformity of carbide and its mechanism in GCr15SiMn bearing steel [D]. Xi'an: Xi'an University of Architecture and Technology, 2015
|
|
周旺松. GCr15SiMn钢碳化物均匀性控制及其机理研究 [D]. 西安: 西安建筑科技大学, 2015
|
2 |
Li Z Q. Experiment and simulation research on the structure evolution of GCr15 steel during heating process [D]. Beijing: University of Science and Technology Beijing, 2018
|
|
李志强. GCr15轴承钢加热过程中组织演变规律的实验和模拟 [D]. 北京: 北京科技大学, 2018
|
3 |
Yan W K. Microstructure evolution and control technology of high-purity of GCr15 bearing steel [D]. Kunming: Kunming University of Science and Technology, 2010
|
|
闫文凯. 高纯净GCr15轴承钢组织演变与控制工艺的研究 [D]. 昆明: 昆明理工大学, 2010
|
4 |
Kawakami K, Taniguchi T, Nakashima K. Generation mechanisms of non-metallic inclusions in high-cleanliness steel [J]. Tetsu Hagané, 2007, 93(12): 743
|
|
川上 潔, 谷口 剛, 中島 邦彦. 高清浄度鋼における介在物の生成起源 [J]. 鉄と 鋼, 2007, 93(12): 743
|
5 |
Zhou D W, Peng P, Xu S H, et al. Research and application of rare earth in steel [J]. Res. Stud. Foundry Equip., 2004, (3): 35
|
|
周惦武, 彭 平, 徐少华 等. 稀土元素在钢中的应用与研究 [J]. 铸造设备研究, 2004, (3): 35
|
6 |
Zheng F Z. Mechanism study on improvement of inclusions and liquation carbide in GCr15 bearing steels by RE-Mg treatment [D]. Ma'anshan: Anhui University of Technology, 2018
|
|
郑福舟. 稀土-镁处理改善GCr15轴承钢夹杂物及液析碳化物规律研究 [D]. 马鞍山: 安徽工业大学, 2018
|
7 |
Li C L. New development of research on rare earth application in steels [J]. Chin. Rare Earths, 2013, 34(3): 78
|
|
李春龙. 稀土在钢中应用与研究新进展 [J]. 稀土, 2013, 34(3): 78
|
8 |
Zhang X F, Tang J P, Han C P, et al. Analysis of the role of rare earth in steel and the present situation of industrial production [J]. Chin. Rare Earth, 2021, 42: 117
|
|
张晓峰, 唐建平, 韩春鹏 等. 稀土在钢中作用及工业化生产现状浅析 [J]. 稀土, 2021, 42: 117
|
9 |
Li Z K, Lei J Z, Xu H F, et al. Current status and development trend of bearing steel in China and abroad [J]. J. Iron Steel Res., 2016, 28(3): 1
doi: 10.1007/s42243-020-00463-4
|
|
李昭昆, 雷建中, 徐海峰 等. 国内外轴承钢的现状与发展趋势 [J]. 钢铁研究学报, 2016, 28(3): 1
|
10 |
Kim K, Oh K, Lee J, et al. Quantitative relationship between degree of center segregation and large carbide size in continuously cast bloom of high carbon chromium bearing steel [J]. J. ASTM Int., 2010, 7: 102533
doi: 10.1520/JAI102533
|
11 |
Kim K H, Park S D, Bae C M. New approach to the soaking condition of 100Cr6 high-carbon chromium bearing steel [J]. Met. Mater. Int., 2014, 20: 207
doi: 10.1007/s12540-014-2003-z
|
12 |
Research Institute of Tayeh Steel Works. An investigation of certain high carbon chromium bearing steel ingots [J]. Acta Metall. Sin., 1977, 13: 109
|
|
大冶钢厂钢铁研究所. 高碳铬轴承钢钢锭解剖 [J]. 金属学报, 1977, 13: 109
|
13 |
Yu M Q. Methods and ways to improve carbide in continuously cast bearing steel in developed countries [J]. J. Shanghai Iron Steel Res., 2006, (1): 3
|
|
虞明全. 发达国家改善连铸轴承钢碳化物的方法和途径 [J]. 上海钢研, 2006, (1): 3
|
14 |
Kim K H, Bae C M. Reduction of segregation during casting of 100Cr6 bearing steel by cerium inoculation [J]. Met. Mater. Int., 2013, 19: 371
doi: 10.1007/s12540-013-3001-2
|
15 |
Zuo Y, Mi Z L, Li Z C, et al. Influence of heating process on dissolve behavior of liquation carbide in casting bearing steel [J]. Trans. Mater. Heat Treat., 2016, 37(2): 146
|
|
左 毅, 米振莉, 李志超 等. 加热工艺对轴承钢连铸坯液析碳化物溶解行为的影响 [J]. 材料热处理学报, 2016, 37(2): 146
|
16 |
Opiela M, Grajcar A. Modification of non-metallic inclusions by rare-earth elements in microalloyed steels [J]. Arch. Foundry Eng., 2012, 12: 129
|
17 |
Li X, Jiang Z H, Geng X, et al. Evolution mechanism of inclusions in H13 steel with rare earth magnesium alloy addition [J]. ISIJ Int., 2019, 59: 1552
doi: 10.2355/isijinternational.ISIJINT-2019-094
|
18 |
van der Eijk C, Grong Ø, Haakonsen F, et al. Progress in the development and use of grain refiner based on cerium sulfide or titanium compound for carbon steel [J]. ISIJ Int., 2009, 49: 1046
doi: 10.2355/isijinternational.49.1046
|
19 |
Yang C Y, Luan Y K, Li D Z, et al. Effect of RE on inclusions in highly clean bearing steel [J]. Steelmaking, 2016, 32(4): 54
|
|
杨超云, 栾义坤, 李殿中 等. 稀土元素对高洁净度轴承钢中夹杂物的影响研究 [J]. 炼钢, 2016, 32(4): 54
|
20 |
Yang C Y, Zhang Q, Li H, et al. Analysis on modification behavior of rare earth to inclusions in highly clean bearing steel [J]. China Metall., 2020, 30(9): 45
|
|
杨超云, 庄 权, 刘 航 等. 稀土变质高洁净轴承钢中夹杂物的行为分析 [J]. 中国冶金, 2020, 30(9): 45
|
21 |
Liotti E, Arteta C, Zisserman A, et al. Crystal nucleation in metallic alloys using X-ray radiography and machine learning [J]. Sci. Adv., 2018, 4: eaar4004
doi: 10.1126/sciadv.aar4004
|
22 |
Bhadeshia H K D H. Steels for bearings [J]. Prog. Mater. Sci., 2012, 57: 268
doi: 10.1016/j.pmatsci.2011.06.002
|
23 |
Blinov V M, Doronin I V, Antoschenkov A E, et al. Deformability of shKh15 steel during cold plastic deformation [J]. Russ. Metall., 2007, 2007: 140
doi: 10.1134/S0036029507020097
|
24 |
Antipov V I, Vinogradov L V, Lazarev E M, et al. Increasing the hardness of shKh15 steel in its products [J]. Russ. Metall., 2009, 2009: 334
doi: 10.1134/S0036029509040090
|
25 |
Kiessling R, Beckström S. Electron probe X-ray microanalysis [J]. Jernkontorets Ann., 1961, 145: 255
|
26 |
Sobolev A, Mirzoev A. Ab initio studies of the short-range atomic structure of liquid iron-carbon alloys [J]. J. Mol. Liq., 2013, 179: 12
doi: 10.1016/j.molliq.2012.11.019
|
27 |
Tian Q B. Effect of rare earth on isothermal transformation kinetics in high strength-toughness tool steel [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 392: 022029
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|