Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (2): 131-136     DOI:
Research Articles Current Issue | Archive | Adv Search |
FABRICATION AND PROPERTIES OF TiN/O’-Sialon ELECTROCONDUCTIVE COMPOSITES
;
东北大学
Cite this article: 

;. FABRICATION AND PROPERTIES OF TiN/O’-Sialon ELECTROCONDUCTIVE COMPOSITES. Acta Metall Sin, 2007, 43(2): 131-136 .

Download:  PDF(415KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The TiN/O′-Sialon electroconductive composite were fabricated by pressureless sintering from TiN/O′-Sialon powder that was synthesized by the carbothermal reduction nitridation method using high titania slag as the chief raw material. Phase assembly and microstructure were analyzed by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The effect of TiO2 content in initial raw materials on densification, mechanical properties and electrical conductivity were studied. The results show that O′-Sialon and TiN exist in the sintered samples. The O′-Sialon grains exhibit equiaxied morphology and the grain size is about 1~3mm. The TiN particles show fine granular morphology, with most of the grains lower than 0.5mm in size. For the composite samples sintered at 1500℃ using raw materials containing 30wt%TiO2, bulk density, hardness and flexure strength is 3.1g/cm3, 9.2GPa and 169MPa, respectively. The minimum amount of TiO2 in initial raw materials is 25wt% for the formation of electroconductive network in the composites. The electric resistivity of such a composite is 1.8×10-2Ω·cm.
Key words:  TiN/O¢      electroconductive composite      microstructure      densification      mechanical property     
Received:  29 May 2006     
ZTFLH:  TQ174.75  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I2/131

[1]Zivkovic L,Nikolic Z,Boskovic S.d Alloy Compd,2004;373:231
[2]Liu C C.Mater Sci Eng,2003;A363:221
[3]Bo(?)kovi(?) S,Sigulinski F,(?)ivkovi(?) L.J Mater Synth Process,1999;7:119
[4]Lin W,Yang J M.J Eur Ceram Soc,1994;13(1):53
[5]Shih C J,Yang J M,Ezis A.Scr Metall Mater,1990;24:2419
[6]Lin W,Yang J M,Ting S J,Ezis A,Shih C J.J Am Ceram Soc,1992;75:2945
[7]Moriyama M,Aoki H,Kamata K.J Ceram Soc Jpn,1995;103:844
[8]Miyake M,Takeuchi H.Bull Ceram Soc Jpn,1986;21:718
[9]Yang J,Xue X X,Xie P,Liu X,Wang M,Wang W Z.Adv Eng Mater,2003;5:658
[10]Jiang T.PhD Dissertation.Shenyang:Northeastern University,2005(姜涛.东北大学博士学位论文,沈阳,2005)
[11]Wang H,Cheng Y B,Muddle B C,Gao L,Yen T S.J Mater Sci,1997;32:3263
[12]Kusy R P.J Appl Phys,1977;48:5301
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!