Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (7): 715-721     DOI:
Research Articles Current Issue | Archive | Adv Search |
Grain Boundary Character Distributions (GBCD) of Cold-Rolled Pb--Ca--Sn--Al Alloy
WANG Weiguo; ZHOU Bangxin; FENG Liu; ZHANG Xin; XIA Shuang
School of Mechanical Engineering ; Shandong University of Technology; Zibo 255049
Cite this article: 

WANG Weiguo; ZHOU Bangxin; FENG Liu; ZHANG Xin; XIA Shuang. Grain Boundary Character Distributions (GBCD) of Cold-Rolled Pb--Ca--Sn--Al Alloy. Acta Metall Sin, 2006, 42(7): 715-721 .

Download:  PDF(954KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Grain boundary character distribution (GBCD) of cold-rolled Pb-Ca-Sn-Al alloy during recovery and recrystallization was investigated by means of electron back scatter diffraction (EBSD).The results indicate straight ∑3 boundaries of over 60% (length fraction of total boundaries, the same as follows) are introduced in the alloy during recovery. Such boundaries are not distributed in the network of general high angle boundaries (HABs) and the GBCD are not optimized. Conversely, in the recrystallization, apart from ∑3 boundaries of over 65% , a fairly amount of ∑9 and ∑27 coincidence site lattice (CSL) boundaries are appeared. ∑9 and ∑27 boundaries along with a great deal of curved ∑3 boundaries are located in the network of HABs and the GBCD are optimized. Further discussion pointed out the straight ∑3 boundaries formed in recovery are <111>60°coherent twin boundaries, they are stable and immobile. While, the ∑3 boundaries developed in recrystallization comprised of not only coherent twin boundaries but also most of incoherent ones. The migration of incoherent ∑3 boundaries as well as the interaction between them result in the formation of ∑9,∑27 and other ∑3n (n is a positive integer) boundaries, and it is the root of GBCD optimization.
Key words:  Pb-Ca-Sn-Al alloy      recovery      recrystallization      grain boundary character distribution      
Received:  05 September 2005     
ZTFLH:  TG111.7  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I7/715

[1] Palumbo G, Erb U. MRS Bull, 1999; 11: 27
[2] Watanabe T. Res Mech, 1984; 11: 47
[3] Lin P, Palumbo G, Erb U,Aust K T.Scr Metall Mater, 1995; 33: 1387
[4] King W E,Schwarts A J. Scr Mater, 1997; 38: 449
[5] Lehockey E M, Limoges D, Palumbo G, Sklarchuk J,Tomantschger K, Vincze A. J Power Source,1999;78:79
[6] Shimada M, Kokawa H, Wang Z J, Sato Y S,Karibe I.Acta Mater, 2002; 50: 2331
[7] Brandon D G, Ralph B,Ranganathan S, Wald M S. Acta Metall, 1964; 12: 813
[8] Randle V, Davies H, Cross I. Current Opinion Solid StateMater Sci, 2001; 5: 3
[9] Davies H, Randle V. J Microscopy, 2002; 205: 253
[10] Randle V, Davies P, Hulm B. Philos Mag, 1999; 79A: 305
[11] Randle V. Scr Mater, 2001; 44: 2789
[12] Randle V, Hu Y. J Mater Sci, 2005; 40: 3243
[13] Ke T S. Solid State Theory of Internal Friction. Beijing:Science Press, 2000: 460 (葛庭燧.固体内耗理论基础.北京:科学出版社,2000:460)
[14] Kuhlmann-Wilsdorf D. Mater Sci Eng, 1989; A113: 1
[15] Yu Y N. The Principles of Metal Science. Beijing: Metallurgical Industry Press , 2000: 409 (余永宁.金属学原理.北京:冶金工业出版社,2000:409)
[16] Hu H. Recovery and Recrystallization of Metals.New York: Chapman & Hall, 1963: 344
[17] Thomoson C B,Randle V.Acta Mater,1997;45:4909
[18] Randle V.Acta Mater,1999; 47: 4187
[19] Kumar M,Schwarts A J,King W E.Acta Mater,2002;50: 2599
[20] Don J,Majumdar S. Acta Metall, 1984; 34: 961
[21] Lee D S, Ryoo S H, Hwang S K. J Mater Eng, 2003; 354A: 106
[22] Palumbo G, Aust K T. In: Weiland H, Wolf D eds., Grain Growth in Polycrystalline,Warrendale, PA: TMS, 1998:311
[23] Watanabe T. Bull Jpn Inst Met, 1992; 31: 138
[24] Xia S, Zhou B X, Chen W J, Wang W G. Acta Metall Sin,2006; 42: 129 (夏爽,周邦新,陈文觉,王卫国.金属学报,2006;42:129)
[25] Harase J. Can Metall Q, 1995; 34: 185K
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[6] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[7] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[8] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[9] JIANG Jufu, ZHANG Yihao, LIU Yingze, WANG Ying, XIAO Guanfei, ZHANG Ying. Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP[J]. 金属学报, 2021, 57(6): 703-716.
[10] YI Xiaoou, HAN Wentuo, LIU Pingping, FERRONI Francesco, ZHAN Qian, WAN Farong. Defect Production, Evolution, and Thermal Recovery Mechanisms in Radiation Damaged Tungsten[J]. 金属学报, 2021, 57(3): 257-271.
[11] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[12] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[13] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[14] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[15] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
No Suggested Reading articles found!