Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (3): 257-271    DOI: 10.11900/0412.1961.2020.00228
Overview Current Issue | Archive | Adv Search |
Defect Production, Evolution, and Thermal Recovery Mechanisms in Radiation Damaged Tungsten
YI Xiaoou1(), HAN Wentuo1, LIU Pingping1, FERRONI Francesco2, ZHAN Qian1, WAN Farong1
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Department of Materials, University of Oxford, Oxford OX1 3PH, U. K.
Cite this article: 

YI Xiaoou, HAN Wentuo, LIU Pingping, FERRONI Francesco, ZHAN Qian, WAN Farong. Defect Production, Evolution, and Thermal Recovery Mechanisms in Radiation Damaged Tungsten. Acta Metall Sin, 2021, 57(3): 257-271.

Download:  HTML  PDF(2052KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Tungsten (W) is a prime candidate for use in plasma-facing components in fusion reactors. These components are subjected to high temperatures and displacement damages caused by fusion neutron bombardments. The displacement damages are mainly present as high concentrations of point defects and clusters. They interact with the hydrogen, helium plasma, and various other transmutation products, giving rise to unwanted consequences, such as radiation hardening, increased brittle-to-ductile transition temperature, and thermal conductivity degradation. This review focuses on the radiation-induced displacement damage in tungsten and aims to provide a systematic summary of the underlying mechanisms for the production, evolution, and thermal recovery of radiation defect, using defect microscopy techniques and materials multiscale modeling. The information uncovered, reflects statistical laws of radiation defect characteristics; serves as the basis for a quantitative description of time- and space-dependent evolution of damage microstructure; and is in great favor of material property prediction, reliability evaluation, and the future development of novel materials.

Key words:  fusion reactor      W      radiation defect      production      evolution      thermal recovery     
Received:  30 June 2020     
ZTFLH:  TG146.4  
Fund: National Natural Science Foundation of China(51701014)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00228     OR     https://www.ams.org.cn/EN/Y2021/V57/I3/257

Fig.1  Spatial distribution analysis of radiation defects in individual collision cascades of tungsten[55]
Fig.2  Evolution behaviour of radiation defects[47]
Fig.3  Dose rate effect upon radiation defect densities (loops or voids) in tungsten (Neutron irradiations: HFIR, 0.6 dpa, 363-997 K[86]; JOYO, 0.17-0.44 dpa, 804-1029 K[14,85]; ion irradiation: 2 MeV W+, 0.4 dpa, 573-773 K and 1.2 dpa, 1023 K[76])
Fig.4  Evolution of damage structure in 2 MeV W+ ion irradiated tungsten (773 K, 1.5 dpa) during dynamic annealing from room temperature (R.T.) to 1473 K (a-h) (Imaging condition: two-beam kinematical bright-field, g=02ˉ0)[119]
1 McCracken G, Scott P. Fusion: The Energy of the Universe [M]. 2nd Ed., Oxford: Elsevier, 2013: 15
2 Abernethy R G. Predicting the performance of tungsten in a fusion environment: A literature review [J]. Mater. Sci. Technol., 2017, 33: 388
3 Stork D, Zinkle S J. Introduction to the special issue on the technical status of materials for a fusion reactor [J]. Nucl. Fusion, 2017, 57: 092001
4 Rieth M, Boutard J L, Dudarev S L, et al. Review on the EFDA programme on tungsten materials technology and science [J]. J. Nucl. Mater., 2011, 417: 463
5 Habainy J, Dai Y, Lee Y, et al. Thermal diffusivity of tungsten irradiated with protons up to 5.8 dpa [J]. J. Nucl. Mater., 2018, 509: 152
6 Butler B G, Paramore J D, Ligda J P, et al. Mechanisms of deformation and ductility in tungsten—A review [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 248
7 Dudarev S L. Density functional theory models for radiation damage [J]. Annu. Rev. Mater. Res., 2013, 43: 35
8 Ackland G J, Finnis M W. Semi-empirical calculation of solid surface tensions in body-centred cubic transition metals [J]. Philos. Mag., 1986, 54A: 301
9 Wu Y C. The routes and mechanism of plasma facing tungsten materials to improve ductility [J]. Acta Metall. Sin., 2019, 55: 171
吴玉程. 面向等离子体W材料改善韧性的方法与机制 [J]. 金属学报, 2019, 55: 171
10 Nordlund K, Zinkle S J, Sand A E, et al. Improving atomic displacement and replacement calculations with physically realistic damage models [J]. Nat. Commun., 2018, 9: 1084
11 E 521-96 Standard practice for neutron radiation damage simulation by charged-particle irradiation [S]. Pennsylvania: ASTM International, 2009
12 Gilbert M R, Sublet J C. Neutron-induced transmutation effects in W and W-alloys in a fusion environment [J]. Nucl. Fusion, 2011, 51: 043005
13 Gilbert M R, Dudarev S L, Nguyen-Manh D, et al. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials [J]. J. Nucl. Mater., 2013, 442: S755
14 Tanno T, Hasegawa A, He J C, et al. Effects of transmutation elements on neutron irradiation hardening of tungsten [J]. Mater. Trans., 2007, 48: 2399
15 Kong X S, Wu X B, You Y W, et al. First-principles calculations of transition metal-solute interactions with point defects in tungsten [J]. Acta Mater., 2014, 66: 172
16 Hu X X, Parish C M, Wang K, et al. Transmutation-induced precipitation in tungsten irradiated with a mixed energy neutron spectrum [J]. Acta Mater., 2019, 165: 51
17 Harrison R W, Greaves G, Hinks J A, et al. A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten [J]. J. Nucl. Mater., 2017, 495: 492
18 Kong X S, Wu X B, Liu C S, et al. First-principles calculations of transition metal solute interactions with hydrogen in tungsten [J]. Nucl. Fusion, 2016, 56: 026004
19 Wirth B D, Hu X X, Kohnert A, et al. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies [J]. J. Mater. Res., 2015, 30: 1440
20 Li M M, Kirk M A, Baldo P M, et al. Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling [J]. Philos. Mag., 2012, 92: 2048
21 Kirk M A, Li M M, Xu D H, et al. Predicting neutron damage using TEM with in situ ion irradiation and computer modeling [J]. J. Nucl. Mater., 2018, 498: 199
22 Xu D H, Wirth B D, Li M M, et al. Recent work towards understanding defect evolution in thin molybdenum foils through in situ ion irradiation under TEM and coordinated cluster dynamics modeling [J]. Curr. Opin. Solid State Mater. Sci., 2012, 16: 109
23 Nordlund K, Zinkle S J, Sand A E, et al. Primary radiation damage: A review of current understanding and models [J]. J. Nucl. Mater., 2018, 512: 450
24 Kinchin G H, Pease R S. The displacement of atoms in solids by radiation [J]. Rep. Prog. Phys., 1955, 18: 1
25 Norgett M J, Robinson M T, Torrens I M. A proposed method of calculating displacement dose rates [J]. Nucl. Eng. Des., 1975, 33: 50
26 Maury F, Biget M, Vajda P, et al. Frenkel pair creation and stage I recovery in W crystals irradiated near threshold [J]. Radiat. Eff., 1978, 38: 53
27 Gilbert M R, Marian J, Sublet J C. Energy spectra of primary knock-on atoms under neutron irradiation [J]. J. Nucl. Mater., 2015, 467: 121
28 De Backer A, Sand A, Ortiz C J, et al. Primary damage in tungsten using the binary collision approximation, molecular dynamic simulations and the density functional theory [J]. Phys. Scr., 2016, 2016: 014018
29 Gilbert M R, Sublet J C. PKA distributions: Contributions from transmutation products and from radioactive decay [J]. Nucl. Mater. Energy, 2016, 9: 576
30 Gilbert M R, Sublet J C. Differential dpa calculations with SPECTRA-PKA [J]. J. Nucl. Mater., 2018, 504: 101
31 Zhang J Z. Fractals [M]. 2nd Ed., Beijing: Tsinghua University Press, 2011: 8
张济忠. 分形 [M]. 第2版. 北京: 清华大学出版社, 2011: 8
32 Moreno-Marin J C, Conrad U, Urbassek H M, et al. Fractal structure of collision cascades [J]. Nucl. Instr. Meth. Phys. Res., 1990, 48B: 404
33 Cheng Y T. On the fractal nature of collision cascades [A]. Materials Modification by High-Fluence Ion Beams. NATO ASI Series (Series E: Applied Sciences) [C]. Dordrecht: Springer, 1989: 191
34 Sand A E, Dudarev S L, Nordlund K. High-energy collision cascades in tungsten: Dislocation loops structure and clustering scaling laws [J]. EPL, 2013, 103: 46003
35 De Backer A, Sand A E, Nordlund K, et al. Subcascade formation and defect cluster size scaling in high-energy collision events in metals [J]. EPL, 2016, 115: 26001
36 Sand A E, Nordlund K, Dudarev S L. Radiation damage production in massive cascades initiated by fusion neutrons in tungsten [J]. J. Nucl. Mater., 2014, 455: 207
37 Sand A E, Mason D R, De Backer A, et al. Cascade fragmentation: Deviation from power law in primary radiation damage [J]. Mater. Res. Lett., 2017, 5: 357
38 Sand A E, Aliaga M J, Caturla M J, et al. Surface effects and statistical laws of defects in primary radiation damage: Tungsten vs. iron [J]. EPL, 2016, 115: 36001
39 Hofmann F, Nguyen-Manh D, Gilbert M R, et al. Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling [J]. Acta Mater., 2015, 89: 352
40 Nguyen-Manh D, Horsfield A P, Dudarev S L. Self-interstitial atom defects in bcc transition metals: Group-specific trends [J]. Phys. Rev., 2006, 73B: 020101(R)
41 Eyre B L, Bullough R. On the formation of interstitial loops in b.c.c. metals [J]. Philos. Mag., 1965, 12: 31
42 Häussermann V F. Eine elektronenmikroskopische analyse von versetzungsringen in wolfram nach bestrahlung mit 60 keV-goldionen [J]. Philos. Mag., 1972, 25: 561
43 Häussermann V F. Elektronenmikroskopische untersuchung der strahlenschädigung durch hochenergetische goldionen in den kubisch-raumzentrierten metallen molybdan und wolfram [J]. Philos. Mag., 1972, 25: 583
44 Häussermann F, Rühle M, Wilkens M. Black-white contrast figures from small dislocation loops II. Application of the first order solution to small loops in ion-irradiated tungsten foils [J]. Phys. Stat. Sol., 1972, 50B: 445
45 Jäger W, Wilkens M. Formation of vacancy-type dislocation loops in tungsten bombarded by 60 keV Au ions [J]. Phys. Status Solidi, 1975, 32A: 89
46 Yi X O, Jenkins M J, Kirk M A, et al. In-situ electron microscope observations and analysis of radiation damage in tungsten [J]. Microsc. Microanal., 2015, 21: 117
47 Yi X O, Jenkins M L, Kirk M A, et al. In-situ TEM studies of 150 keV W+ ion irradiated W and W-alloys: Damage production and microstructural evolution [J]. Acta Mater., 2016, 112: 105
48 Ventelon L, Willaime F, Fu C C, et al. Ab initio investigation of radiation defects in tungsten: Structure of self-interstitials and specificity of di-vacancies compared to other bcc transition metals [J]. J. Nucl. Mater., 2012, 425: 16
49 Gilbert M R, Dudarev S L, Derlet P M, et al. Structure and metastability of mesoscopic vacancy and interstitial loop defects in iron and tungsten [J]. J. Phys.: Condens. Matter, 2008, 20: 345214
50 Mason D R, Yi X, Kirk M A, et al. Elastic trapping of dislocation loops in cascades in ion-irradiated tungsten foils [J]. J. Phys.: Condens. Matter, 2014, 26: 375701
51 Mason D R, Yi X O, Sand A E, et al. Experimental observation of the number of visible defects produced in individual primary damage cascades in irradiated tungsten [J]. EPL, 2018, 122: 66001
52 Yi X, Jenkins M L, Briceno M, et al. In situ study of self-ion irradiation damage in W and W-5Re at 500oC [J]. Philos. Mag., 2013, 93: 1715
53 Kirk M A, Robertson I M, Jenkins M L, et al. The collapse of defect cascades to dislocation loops [J]. J. Nucl. Mater., 1987, 149: 21
54 Yi X, Sand A E, Mason D R, et al. Direct observation of size scaling and elastic interaction between nano-scale defects in collision cascades [J]. EPL, 2015, 110: 36001
55 Mason D R, Sand A E, Yi X, et al. Direct observation of the spatial distribution of primary cascade damage in tungsten [J]. Acta Mater., 2018, 144: 905
56 Jenkins M L, English C A, Eyre B L. Heavy-ion irradiation of α-iron [J]. Philos. Mag., 1978, 38A: 97
57 English C A, Jenkins M. Insight into cascade processes arising from studies of cascade collapse [J]. Mater. Sci. Forum, 1987, 15-18: 1003
58 Robertson I M, Jenkins M L, English C A. Low-dose neutron-irradiation damage in α-iron [J]. J. Nucl. Mater., 1982, 108-109: 209
59 Yao Z, Hernández-Mayoral M, Jenkins M L, et al. Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 1: Damage evolution in thin-foils at lower doses [J]. Philos. Mag., 2008, 88: 2851
60 Robertson I M, Kirk M A, King W E. Formation of dislocation loops in iron by self-ion irradiations at 40 K [J]. Scr. Metall., 1984, 18: 317
61 Sand A E, Byggmästar J, Zitting A, et al. Defect structures and statistics in overlapping cascade damage in fusion-relevant bcc metals [J]. J. Nucl. Mater., 2018, 511: 64
62 Amino T, Arakawa K, Mori H. Detection of one-dimensional migration of single self-interstitial atoms in tungsten using high-voltage electron microscopy [J]. Sci. Rep., 2016, 6: 26099
63 Arakawa K, Marinica M C, Fitzgerald S, et al. Quantum de-trapping and transport of heavy defects in tungsten [J]. Nat. Mater., 2020, 19: 508
64 Amino T, Arakawa K, Mori H. Activation energy for long-range migration of self-interstitial atoms in tungsten obtained by direct measurement of radiation-induced point-defect clusters [J]. Philos. Mag. Lett., 2011, 91: 86
65 Sikka V K, Moteff J. Superlattice of voids in neutron-irradiated tungsten [J]. J. Appl. Phys., 1972, 43: 4942
66 Li X Y, Liu W, Xu Y C, et al. An energetic and kinetic perspective of the grain-boundary role in healing radiation damage in tungsten [J]. Nucl. Fusion, 2013, 53: 123014
67 Tanno T, Hasegawa A, He J C, et al. Effects of transmutation elements on the microstructural evolution and electrical resistivity of neutron-irradiated tungsten [J]. J. Nucl. Mater., 2009, 386-388: 218
68 Johnson P B, Mazey D J. Gas-bubble superlattice formation in bcc metals [J]. J. Nucl. Mater., 1995, 218: 273
69 Harrison R W, Greaves G, Hinks J A, et al. Engineering self-organising helium bubble lattices in tungsten [J]. Sci. Rep., 2017, 7: 7724
70 Sikka V K, Moteff J. “Rafting” in neutron irradiated tungsten [J]. J. Nucl. Mater., 1973, 46: 217
71 Wen M, Ghoniem N M, Singh B N. Dislocation decoration and raft formation in irradiated materials [J]. Philos. Mag., 2005, 85: 2561
72 Dudarev S L, Arakawa K, Yi X, et al. Spatial ordering of nano-dislocation loops in ion-irradiated materials [J]. J. Nucl. Mater., 2014, 455: 16
73 El-Atwani O, Aydogan E, Esquivel E, et al. Detailed transmission electron microscopy study on the mechanism of dislocation loop rafting in tungsten [J]. Acta Mater., 2018, 147: 277
74 Arakawa K, Amino T, Mori H. Direct observation of the coalescence process between nanoscale dislocation loops with different Burgers vectors [J]. Acta Mater., 2011, 59: 141
75 Gilbert M R. BCC metals in extreme environments: Modelling the structure and evolution of defects [D]. Oxford: University of Oxford, 2010
76 Yi X O, Jenkins M L, Hattar K, et al. Characterisation of radiation damage in W and W-based alloys from 2 MeV self-ion near-bulk implantations [J]. Acta Mater., 2015, 92: 163
77 Tanno T, Fukuda M, Nogami S, et al. Microstructure development in neutron irradiated tungsten alloys [J]. Mater. Trans., 2011, 52: 1447
78 Hasegawa A, Fukuda M, Nogami S, et al. Neutron irradiation effects on tungsten materials [J]. Fus. Eng. Des., 2014, 89: 1568
79 Hasegawa A, Fukuda M, Tanno T, et al. Neutron irradiation behavior of tungsten [J]. Mater. Trans., 2013, 54: 466
80 Hasegawa A, Fukuda M, Yabuuchi K, et al. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys [J]. J. Nucl. Mater., 2016, 471: 175
81 Chrominski W, Ciupinski L, Bazarnika P, et al. TEM investigation of the influence of dose rate on radiation damage and deuterium retention in tungsten [J]. Mater. Charact., 2019, 154: 1
82 Schwarz-Selinger T, Bauer J, Elgeti S, et al. Influence of the presence of deuterium on displacement damage in tungsten [J]. Nucl. Mater. Energy, 2018, 17: 228
83 Zhang C H. Study of radiation damage of materials candidate to advanced nuclear energy systems by utilizing high-energy heavy ions at HIRFL [J]. Nucl. Phys. Rev., 2017, 34: 803
张崇宏. 利用HIRFL高能重离子束的核能材料辐照损伤研究 [J]. 原子核物理评论, 2017, 34: 803
84 Mansur L K. Correlation of neutron and heavy-ion damage: II. The predicted temperature shift if swelling with changes in radiation dose rate [J]. J. Nucl. Mater., 1978, 78: 156
85 Fukuda M, Tanno T, Nogami S, et al. Effects of Re content and fabrication process on microstructural changes and hardening in neutron irradiated tungsten [J]. Mater. Trans., 2012, 53: 2145
86 Hu X X, Koyanagi T, Fukuda M, et al. Irradiation hardening of pure tungsten exposed to neutron irradiation [J]. J. Nucl. Mater., 2016, 480: 235
87 Rieth M, Doerner R, Hasegawa A, et al. Behavior of tungsten under irradiation and plasma interaction [J]. J. Nucl. Mater., 2019, 519: 334
88 Wróbel J S, Nguyen-Manh D, Kurzydłowski K J, et al. A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys [J]. J. Phys.: Condens. Matter, 2017, 29: 145403
89 Ekman M, Persson K, Grimvall G. Phase diagram and lattice instability in tungsten-rhenium alloys [J]. J. Nucl. Mater., 2000, 278: 273
90 Xu A, Beck C, Armstrong D E J, et al. Ion-irradiation-induced clustering in W-Re and W-Re-Os alloys: A comparative study using atom probe tomography and nanoindentation measurements [J]. Acta Mater., 2015, 87: 121
91 Suzudo T, Yamaguchi M, Hasegawa A. Stability and mobility of rhenium and osmium in tungsten: First principles study [J]. Modelling Simul. Mater. Sci. Eng., 2014, 22: 075006
92 Suzudo T, Yamaguchi M, Hasegawa A. Migration of rhenium and osmium interstitials in tungsten [J]. J. Nucl. Mater., 2015, 467: 418
93 Hasegawa A, Takashi T, Nogami S, et al. Property change mechanism in tungsten under neutron irradiation in various reactors [J]. J. Nucl. Mater., 2011, 417: 491
94 Xu A L, Armstrong D E J, Beck C, et al. Ion-irradiation induced clustering in W-Re-Ta, W-Re and W-Ta alloys: An atom probe tomography and nanoindentation study [J]. Acta Mater., 2017, 124: 71
95 Harrison R W, Amari H, Greaves G, et al. Effect of He-appm/DPA ratio on the damage microstructure of tungsten [J]. MRS Adv., 2016, 1: 2893
96 Nguyen-Manh D, Dudarev S L. Trapping of He clusters by inert-gas impurities in tungsten: First-principles predictions and experimental validation [J]. Nucl. Instr. Meth. Phys. Res., 2015, 352B: 86
97 Ipatova I, Harrison R W, Wady P T, et al. Structural defect accumulation in tungsten and tungsten-5wt.% tantalum under incremental proton damage [J]. J. Nucl. Mater., 2018, 501: 329
98 Ferroni F, Tarleton E, Fitzgerald S. Dislocation dynamics modelling of radiation damage in thin films [J]. Modelling Simul. Mater. Sci. Eng., 2014, 22: 045009
99 Zheng R Y, Han W Z. Comparative study of radiation defects in ion irradiated bulk and thin-foil tungsten [J]. Acta Mater., 2020, 186: 162
100 Zhang Z X, Yabuuchi K, Kimura A. Defect distribution in ion-irradiated pure tungsten at different temperatures [J]. J. Nucl. Mater., 2016, 480: 207
101 Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
102 Huang Y, Wiezorek J M K, Garner F A, et al. Microstructural characterization and density change of 304 stainless steel reflector blocks after long-term irradiation in EBR-II [J]. J. Nucl. Mater., 2015, 465: 516
103 Zhang T, Deng H W, Xie Z M, et al. Recent progresses on designing and manufacturing of bulk refractory alloys with high performances based on controlling interfaces [J]. J. Mater. Sci. Technol., 2020, 52: 29
104 Wu Y C, Hou Q Q, Luo L M, et al. Preparation of ultrafine-grained/nanostructured tungsten materials: An overview [J]. J. Alloys Compd., 2019, 779: 926
105 El-Atwani O, Hinks J A, Greaves G, et al. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments [J]. Sci. Rep., 2014, 4: 4716
106 El-Atwani O, Hinks J A, Greaves G, et al. Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten [J]. Mater. Res. Lett., 2017, 5: 343
107 Han W Z, Demkowicz M J, Fu E G, et al. Effect of grain boundary character on sink efficiency [J]. Acta Mater., 2012, 60: 6341
108 Yang X L, Qiu W B, Chen L Q, et al. Tungsten-potassium: A promising plasma-facing material [J]. Tungsten, 2019, 1: 141
109 Xie Z M, Liu R, Miao S, et al. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature [J]. Sci. Rep., 2015, 5: 16014
110 Kurishita H, Arakawa H, Matsuo S, et al. Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement [J]. Mater. Trans., 2013, 54: 456
111 Tan X Y, Luo L M, Chen H Y, et al. Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation [J]. Sci. Rep., 2015, 5: 12755
112 Zhu H L. A theory of swelling due to void growth in irradiated materials (I): Neutral sinks [J]. Acta Phys. Sin., 1989, 38: 1443
朱慧珑. 辐照材料的肿胀理论(Ⅰ)——中性尾闾 [J]. 物理学报, 1989, 38: 1443
113 Bullough R, Hayns M R, Wood M H. Sink strengths for thin film surfaces and grain boundaries [J]. J. Nucl. Mater., 1980, 90: 44
114 Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy [J]. Annu. Rev. Mater. Res., 2014, 44: 241
115 Keys L K, Moteff J. Neutron irradiation and defect recovery of tungsten [J]. J. Nucl. Mater., 1970, 34: 260
116 Bowkett K M, Ralph B. The annealing of radiation damage in tungsten investigated by field-ion microscopy [J]. Proc. R. Soc., London1969, 312A: 51
117 Kim Y M, Galligan J M. Radiation damage and stage III defect annealing in thermal neutron irradiated tungsten [J]. Acta Metall., 1978, 26: 379
118 Hu X X, Koyanagi T, Fukuda M, et al. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation [J]. J. Nucl. Mater., 2016, 470: 278
119 Ferroni F, Yi X O, Arakawa K, et al. High temperature annealing of ion irradiated tungsten [J]. Acta Mater., 2015, 90: 380
120 Ferroni F. Electron microscopy and multi-scale modelling of radiation damage recovery in tungsten [D]. Oxford: University of Oxford, 2016
121 Swinburne T D, Arakawa K, Mori H, et al. Fast, vacancy-free climb of prismatic dislocation loops in bcc metals [J]. Sci. Rep., 2016, 6: 30596
122 Wilson K L, Baskes M I, Seidman D N. An in situ field-ion microscope study of the recovery behavior of ion-irradiated tungsten and tungsten alloys [J]. Acta Metall., 1980, 28: 89
123 Yi X O, Arakawa K, Du Y F, et al. High-temperature defect recovery in self-ion irradiated W-5 wt%Ta [J]. Nucl. Mater. Energy, 2019, 18: 93
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[10] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
No Suggested Reading articles found!