|
|
Defect Production, Evolution, and Thermal Recovery Mechanisms in Radiation Damaged Tungsten |
YI Xiaoou1( ), HAN Wentuo1, LIU Pingping1, FERRONI Francesco2, ZHAN Qian1, WAN Farong1 |
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2.Department of Materials, University of Oxford, Oxford OX1 3PH, U. K. |
|
Cite this article:
YI Xiaoou, HAN Wentuo, LIU Pingping, FERRONI Francesco, ZHAN Qian, WAN Farong. Defect Production, Evolution, and Thermal Recovery Mechanisms in Radiation Damaged Tungsten. Acta Metall Sin, 2021, 57(3): 257-271.
|
Abstract Tungsten (W) is a prime candidate for use in plasma-facing components in fusion reactors. These components are subjected to high temperatures and displacement damages caused by fusion neutron bombardments. The displacement damages are mainly present as high concentrations of point defects and clusters. They interact with the hydrogen, helium plasma, and various other transmutation products, giving rise to unwanted consequences, such as radiation hardening, increased brittle-to-ductile transition temperature, and thermal conductivity degradation. This review focuses on the radiation-induced displacement damage in tungsten and aims to provide a systematic summary of the underlying mechanisms for the production, evolution, and thermal recovery of radiation defect, using defect microscopy techniques and materials multiscale modeling. The information uncovered, reflects statistical laws of radiation defect characteristics; serves as the basis for a quantitative description of time- and space-dependent evolution of damage microstructure; and is in great favor of material property prediction, reliability evaluation, and the future development of novel materials.
|
Received: 30 June 2020
|
|
Fund: National Natural Science Foundation of China(51701014) |
1 |
McCracken G, Scott P. Fusion: The Energy of the Universe [M]. 2nd Ed., Oxford: Elsevier, 2013: 15
|
2 |
Abernethy R G. Predicting the performance of tungsten in a fusion environment: A literature review [J]. Mater. Sci. Technol., 2017, 33: 388
|
3 |
Stork D, Zinkle S J. Introduction to the special issue on the technical status of materials for a fusion reactor [J]. Nucl. Fusion, 2017, 57: 092001
|
4 |
Rieth M, Boutard J L, Dudarev S L, et al. Review on the EFDA programme on tungsten materials technology and science [J]. J. Nucl. Mater., 2011, 417: 463
|
5 |
Habainy J, Dai Y, Lee Y, et al. Thermal diffusivity of tungsten irradiated with protons up to 5.8 dpa [J]. J. Nucl. Mater., 2018, 509: 152
|
6 |
Butler B G, Paramore J D, Ligda J P, et al. Mechanisms of deformation and ductility in tungsten—A review [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 248
|
7 |
Dudarev S L. Density functional theory models for radiation damage [J]. Annu. Rev. Mater. Res., 2013, 43: 35
|
8 |
Ackland G J, Finnis M W. Semi-empirical calculation of solid surface tensions in body-centred cubic transition metals [J]. Philos. Mag., 1986, 54A: 301
|
9 |
Wu Y C. The routes and mechanism of plasma facing tungsten materials to improve ductility [J]. Acta Metall. Sin., 2019, 55: 171
|
|
吴玉程. 面向等离子体W材料改善韧性的方法与机制 [J]. 金属学报, 2019, 55: 171
|
10 |
Nordlund K, Zinkle S J, Sand A E, et al. Improving atomic displacement and replacement calculations with physically realistic damage models [J]. Nat. Commun., 2018, 9: 1084
|
11 |
E 521-96 Standard practice for neutron radiation damage simulation by charged-particle irradiation [S]. Pennsylvania: ASTM International, 2009
|
12 |
Gilbert M R, Sublet J C. Neutron-induced transmutation effects in W and W-alloys in a fusion environment [J]. Nucl. Fusion, 2011, 51: 043005
|
13 |
Gilbert M R, Dudarev S L, Nguyen-Manh D, et al. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials [J]. J. Nucl. Mater., 2013, 442: S755
|
14 |
Tanno T, Hasegawa A, He J C, et al. Effects of transmutation elements on neutron irradiation hardening of tungsten [J]. Mater. Trans., 2007, 48: 2399
|
15 |
Kong X S, Wu X B, You Y W, et al. First-principles calculations of transition metal-solute interactions with point defects in tungsten [J]. Acta Mater., 2014, 66: 172
|
16 |
Hu X X, Parish C M, Wang K, et al. Transmutation-induced precipitation in tungsten irradiated with a mixed energy neutron spectrum [J]. Acta Mater., 2019, 165: 51
|
17 |
Harrison R W, Greaves G, Hinks J A, et al. A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten [J]. J. Nucl. Mater., 2017, 495: 492
|
18 |
Kong X S, Wu X B, Liu C S, et al. First-principles calculations of transition metal solute interactions with hydrogen in tungsten [J]. Nucl. Fusion, 2016, 56: 026004
|
19 |
Wirth B D, Hu X X, Kohnert A, et al. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies [J]. J. Mater. Res., 2015, 30: 1440
|
20 |
Li M M, Kirk M A, Baldo P M, et al. Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling [J]. Philos. Mag., 2012, 92: 2048
|
21 |
Kirk M A, Li M M, Xu D H, et al. Predicting neutron damage using TEM with in situ ion irradiation and computer modeling [J]. J. Nucl. Mater., 2018, 498: 199
|
22 |
Xu D H, Wirth B D, Li M M, et al. Recent work towards understanding defect evolution in thin molybdenum foils through in situ ion irradiation under TEM and coordinated cluster dynamics modeling [J]. Curr. Opin. Solid State Mater. Sci., 2012, 16: 109
|
23 |
Nordlund K, Zinkle S J, Sand A E, et al. Primary radiation damage: A review of current understanding and models [J]. J. Nucl. Mater., 2018, 512: 450
|
24 |
Kinchin G H, Pease R S. The displacement of atoms in solids by radiation [J]. Rep. Prog. Phys., 1955, 18: 1
|
25 |
Norgett M J, Robinson M T, Torrens I M. A proposed method of calculating displacement dose rates [J]. Nucl. Eng. Des., 1975, 33: 50
|
26 |
Maury F, Biget M, Vajda P, et al. Frenkel pair creation and stage I recovery in W crystals irradiated near threshold [J]. Radiat. Eff., 1978, 38: 53
|
27 |
Gilbert M R, Marian J, Sublet J C. Energy spectra of primary knock-on atoms under neutron irradiation [J]. J. Nucl. Mater., 2015, 467: 121
|
28 |
De Backer A, Sand A, Ortiz C J, et al. Primary damage in tungsten using the binary collision approximation, molecular dynamic simulations and the density functional theory [J]. Phys. Scr., 2016, 2016: 014018
|
29 |
Gilbert M R, Sublet J C. PKA distributions: Contributions from transmutation products and from radioactive decay [J]. Nucl. Mater. Energy, 2016, 9: 576
|
30 |
Gilbert M R, Sublet J C. Differential dpa calculations with SPECTRA-PKA [J]. J. Nucl. Mater., 2018, 504: 101
|
31 |
Zhang J Z. Fractals [M]. 2nd Ed., Beijing: Tsinghua University Press, 2011: 8
|
|
张济忠. 分形 [M]. 第2版. 北京: 清华大学出版社, 2011: 8
|
32 |
Moreno-Marin J C, Conrad U, Urbassek H M, et al. Fractal structure of collision cascades [J]. Nucl. Instr. Meth. Phys. Res., 1990, 48B: 404
|
33 |
Cheng Y T. On the fractal nature of collision cascades [A]. Materials Modification by High-Fluence Ion Beams. NATO ASI Series (Series E: Applied Sciences) [C]. Dordrecht: Springer, 1989: 191
|
34 |
Sand A E, Dudarev S L, Nordlund K. High-energy collision cascades in tungsten: Dislocation loops structure and clustering scaling laws [J]. EPL, 2013, 103: 46003
|
35 |
De Backer A, Sand A E, Nordlund K, et al. Subcascade formation and defect cluster size scaling in high-energy collision events in metals [J]. EPL, 2016, 115: 26001
|
36 |
Sand A E, Nordlund K, Dudarev S L. Radiation damage production in massive cascades initiated by fusion neutrons in tungsten [J]. J. Nucl. Mater., 2014, 455: 207
|
37 |
Sand A E, Mason D R, De Backer A, et al. Cascade fragmentation: Deviation from power law in primary radiation damage [J]. Mater. Res. Lett., 2017, 5: 357
|
38 |
Sand A E, Aliaga M J, Caturla M J, et al. Surface effects and statistical laws of defects in primary radiation damage: Tungsten vs. iron [J]. EPL, 2016, 115: 36001
|
39 |
Hofmann F, Nguyen-Manh D, Gilbert M R, et al. Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling [J]. Acta Mater., 2015, 89: 352
|
40 |
Nguyen-Manh D, Horsfield A P, Dudarev S L. Self-interstitial atom defects in bcc transition metals: Group-specific trends [J]. Phys. Rev., 2006, 73B: 020101(R)
|
41 |
Eyre B L, Bullough R. On the formation of interstitial loops in b.c.c. metals [J]. Philos. Mag., 1965, 12: 31
|
42 |
Häussermann V F. Eine elektronenmikroskopische analyse von versetzungsringen in wolfram nach bestrahlung mit 60 keV-goldionen [J]. Philos. Mag., 1972, 25: 561
|
43 |
Häussermann V F. Elektronenmikroskopische untersuchung der strahlenschädigung durch hochenergetische goldionen in den kubisch-raumzentrierten metallen molybdan und wolfram [J]. Philos. Mag., 1972, 25: 583
|
44 |
Häussermann F, Rühle M, Wilkens M. Black-white contrast figures from small dislocation loops II. Application of the first order solution to small loops in ion-irradiated tungsten foils [J]. Phys. Stat. Sol., 1972, 50B: 445
|
45 |
Jäger W, Wilkens M. Formation of vacancy-type dislocation loops in tungsten bombarded by 60 keV Au ions [J]. Phys. Status Solidi, 1975, 32A: 89
|
46 |
Yi X O, Jenkins M J, Kirk M A, et al. In-situ electron microscope observations and analysis of radiation damage in tungsten [J]. Microsc. Microanal., 2015, 21: 117
|
47 |
Yi X O, Jenkins M L, Kirk M A, et al. In-situ TEM studies of 150 keV W+ ion irradiated W and W-alloys: Damage production and microstructural evolution [J]. Acta Mater., 2016, 112: 105
|
48 |
Ventelon L, Willaime F, Fu C C, et al. Ab initio investigation of radiation defects in tungsten: Structure of self-interstitials and specificity of di-vacancies compared to other bcc transition metals [J]. J. Nucl. Mater., 2012, 425: 16
|
49 |
Gilbert M R, Dudarev S L, Derlet P M, et al. Structure and metastability of mesoscopic vacancy and interstitial loop defects in iron and tungsten [J]. J. Phys.: Condens. Matter, 2008, 20: 345214
|
50 |
Mason D R, Yi X, Kirk M A, et al. Elastic trapping of dislocation loops in cascades in ion-irradiated tungsten foils [J]. J. Phys.: Condens. Matter, 2014, 26: 375701
|
51 |
Mason D R, Yi X O, Sand A E, et al. Experimental observation of the number of visible defects produced in individual primary damage cascades in irradiated tungsten [J]. EPL, 2018, 122: 66001
|
52 |
Yi X, Jenkins M L, Briceno M, et al. In situ study of self-ion irradiation damage in W and W-5Re at 500oC [J]. Philos. Mag., 2013, 93: 1715
|
53 |
Kirk M A, Robertson I M, Jenkins M L, et al. The collapse of defect cascades to dislocation loops [J]. J. Nucl. Mater., 1987, 149: 21
|
54 |
Yi X, Sand A E, Mason D R, et al. Direct observation of size scaling and elastic interaction between nano-scale defects in collision cascades [J]. EPL, 2015, 110: 36001
|
55 |
Mason D R, Sand A E, Yi X, et al. Direct observation of the spatial distribution of primary cascade damage in tungsten [J]. Acta Mater., 2018, 144: 905
|
56 |
Jenkins M L, English C A, Eyre B L. Heavy-ion irradiation of α-iron [J]. Philos. Mag., 1978, 38A: 97
|
57 |
English C A, Jenkins M. Insight into cascade processes arising from studies of cascade collapse [J]. Mater. Sci. Forum, 1987, 15-18: 1003
|
58 |
Robertson I M, Jenkins M L, English C A. Low-dose neutron-irradiation damage in α-iron [J]. J. Nucl. Mater., 1982, 108-109: 209
|
59 |
Yao Z, Hernández-Mayoral M, Jenkins M L, et al. Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 1: Damage evolution in thin-foils at lower doses [J]. Philos. Mag., 2008, 88: 2851
|
60 |
Robertson I M, Kirk M A, King W E. Formation of dislocation loops in iron by self-ion irradiations at 40 K [J]. Scr. Metall., 1984, 18: 317
|
61 |
Sand A E, Byggmästar J, Zitting A, et al. Defect structures and statistics in overlapping cascade damage in fusion-relevant bcc metals [J]. J. Nucl. Mater., 2018, 511: 64
|
62 |
Amino T, Arakawa K, Mori H. Detection of one-dimensional migration of single self-interstitial atoms in tungsten using high-voltage electron microscopy [J]. Sci. Rep., 2016, 6: 26099
|
63 |
Arakawa K, Marinica M C, Fitzgerald S, et al. Quantum de-trapping and transport of heavy defects in tungsten [J]. Nat. Mater., 2020, 19: 508
|
64 |
Amino T, Arakawa K, Mori H. Activation energy for long-range migration of self-interstitial atoms in tungsten obtained by direct measurement of radiation-induced point-defect clusters [J]. Philos. Mag. Lett., 2011, 91: 86
|
65 |
Sikka V K, Moteff J. Superlattice of voids in neutron-irradiated tungsten [J]. J. Appl. Phys., 1972, 43: 4942
|
66 |
Li X Y, Liu W, Xu Y C, et al. An energetic and kinetic perspective of the grain-boundary role in healing radiation damage in tungsten [J]. Nucl. Fusion, 2013, 53: 123014
|
67 |
Tanno T, Hasegawa A, He J C, et al. Effects of transmutation elements on the microstructural evolution and electrical resistivity of neutron-irradiated tungsten [J]. J. Nucl. Mater., 2009, 386-388: 218
|
68 |
Johnson P B, Mazey D J. Gas-bubble superlattice formation in bcc metals [J]. J. Nucl. Mater., 1995, 218: 273
|
69 |
Harrison R W, Greaves G, Hinks J A, et al. Engineering self-organising helium bubble lattices in tungsten [J]. Sci. Rep., 2017, 7: 7724
|
70 |
Sikka V K, Moteff J. “Rafting” in neutron irradiated tungsten [J]. J. Nucl. Mater., 1973, 46: 217
|
71 |
Wen M, Ghoniem N M, Singh B N. Dislocation decoration and raft formation in irradiated materials [J]. Philos. Mag., 2005, 85: 2561
|
72 |
Dudarev S L, Arakawa K, Yi X, et al. Spatial ordering of nano-dislocation loops in ion-irradiated materials [J]. J. Nucl. Mater., 2014, 455: 16
|
73 |
El-Atwani O, Aydogan E, Esquivel E, et al. Detailed transmission electron microscopy study on the mechanism of dislocation loop rafting in tungsten [J]. Acta Mater., 2018, 147: 277
|
74 |
Arakawa K, Amino T, Mori H. Direct observation of the coalescence process between nanoscale dislocation loops with different Burgers vectors [J]. Acta Mater., 2011, 59: 141
|
75 |
Gilbert M R. BCC metals in extreme environments: Modelling the structure and evolution of defects [D]. Oxford: University of Oxford, 2010
|
76 |
Yi X O, Jenkins M L, Hattar K, et al. Characterisation of radiation damage in W and W-based alloys from 2 MeV self-ion near-bulk implantations [J]. Acta Mater., 2015, 92: 163
|
77 |
Tanno T, Fukuda M, Nogami S, et al. Microstructure development in neutron irradiated tungsten alloys [J]. Mater. Trans., 2011, 52: 1447
|
78 |
Hasegawa A, Fukuda M, Nogami S, et al. Neutron irradiation effects on tungsten materials [J]. Fus. Eng. Des., 2014, 89: 1568
|
79 |
Hasegawa A, Fukuda M, Tanno T, et al. Neutron irradiation behavior of tungsten [J]. Mater. Trans., 2013, 54: 466
|
80 |
Hasegawa A, Fukuda M, Yabuuchi K, et al. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys [J]. J. Nucl. Mater., 2016, 471: 175
|
81 |
Chrominski W, Ciupinski L, Bazarnika P, et al. TEM investigation of the influence of dose rate on radiation damage and deuterium retention in tungsten [J]. Mater. Charact., 2019, 154: 1
|
82 |
Schwarz-Selinger T, Bauer J, Elgeti S, et al. Influence of the presence of deuterium on displacement damage in tungsten [J]. Nucl. Mater. Energy, 2018, 17: 228
|
83 |
Zhang C H. Study of radiation damage of materials candidate to advanced nuclear energy systems by utilizing high-energy heavy ions at HIRFL [J]. Nucl. Phys. Rev., 2017, 34: 803
|
|
张崇宏. 利用HIRFL高能重离子束的核能材料辐照损伤研究 [J]. 原子核物理评论, 2017, 34: 803
|
84 |
Mansur L K. Correlation of neutron and heavy-ion damage: II. The predicted temperature shift if swelling with changes in radiation dose rate [J]. J. Nucl. Mater., 1978, 78: 156
|
85 |
Fukuda M, Tanno T, Nogami S, et al. Effects of Re content and fabrication process on microstructural changes and hardening in neutron irradiated tungsten [J]. Mater. Trans., 2012, 53: 2145
|
86 |
Hu X X, Koyanagi T, Fukuda M, et al. Irradiation hardening of pure tungsten exposed to neutron irradiation [J]. J. Nucl. Mater., 2016, 480: 235
|
87 |
Rieth M, Doerner R, Hasegawa A, et al. Behavior of tungsten under irradiation and plasma interaction [J]. J. Nucl. Mater., 2019, 519: 334
|
88 |
Wróbel J S, Nguyen-Manh D, Kurzydłowski K J, et al. A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys [J]. J. Phys.: Condens. Matter, 2017, 29: 145403
|
89 |
Ekman M, Persson K, Grimvall G. Phase diagram and lattice instability in tungsten-rhenium alloys [J]. J. Nucl. Mater., 2000, 278: 273
|
90 |
Xu A, Beck C, Armstrong D E J, et al. Ion-irradiation-induced clustering in W-Re and W-Re-Os alloys: A comparative study using atom probe tomography and nanoindentation measurements [J]. Acta Mater., 2015, 87: 121
|
91 |
Suzudo T, Yamaguchi M, Hasegawa A. Stability and mobility of rhenium and osmium in tungsten: First principles study [J]. Modelling Simul. Mater. Sci. Eng., 2014, 22: 075006
|
92 |
Suzudo T, Yamaguchi M, Hasegawa A. Migration of rhenium and osmium interstitials in tungsten [J]. J. Nucl. Mater., 2015, 467: 418
|
93 |
Hasegawa A, Takashi T, Nogami S, et al. Property change mechanism in tungsten under neutron irradiation in various reactors [J]. J. Nucl. Mater., 2011, 417: 491
|
94 |
Xu A L, Armstrong D E J, Beck C, et al. Ion-irradiation induced clustering in W-Re-Ta, W-Re and W-Ta alloys: An atom probe tomography and nanoindentation study [J]. Acta Mater., 2017, 124: 71
|
95 |
Harrison R W, Amari H, Greaves G, et al. Effect of He-appm/DPA ratio on the damage microstructure of tungsten [J]. MRS Adv., 2016, 1: 2893
|
96 |
Nguyen-Manh D, Dudarev S L. Trapping of He clusters by inert-gas impurities in tungsten: First-principles predictions and experimental validation [J]. Nucl. Instr. Meth. Phys. Res., 2015, 352B: 86
|
97 |
Ipatova I, Harrison R W, Wady P T, et al. Structural defect accumulation in tungsten and tungsten-5wt.% tantalum under incremental proton damage [J]. J. Nucl. Mater., 2018, 501: 329
|
98 |
Ferroni F, Tarleton E, Fitzgerald S. Dislocation dynamics modelling of radiation damage in thin films [J]. Modelling Simul. Mater. Sci. Eng., 2014, 22: 045009
|
99 |
Zheng R Y, Han W Z. Comparative study of radiation defects in ion irradiated bulk and thin-foil tungsten [J]. Acta Mater., 2020, 186: 162
|
100 |
Zhang Z X, Yabuuchi K, Kimura A. Defect distribution in ion-irradiated pure tungsten at different temperatures [J]. J. Nucl. Mater., 2016, 480: 207
|
101 |
Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
|
102 |
Huang Y, Wiezorek J M K, Garner F A, et al. Microstructural characterization and density change of 304 stainless steel reflector blocks after long-term irradiation in EBR-II [J]. J. Nucl. Mater., 2015, 465: 516
|
103 |
Zhang T, Deng H W, Xie Z M, et al. Recent progresses on designing and manufacturing of bulk refractory alloys with high performances based on controlling interfaces [J]. J. Mater. Sci. Technol., 2020, 52: 29
|
104 |
Wu Y C, Hou Q Q, Luo L M, et al. Preparation of ultrafine-grained/nanostructured tungsten materials: An overview [J]. J. Alloys Compd., 2019, 779: 926
|
105 |
El-Atwani O, Hinks J A, Greaves G, et al. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments [J]. Sci. Rep., 2014, 4: 4716
|
106 |
El-Atwani O, Hinks J A, Greaves G, et al. Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten [J]. Mater. Res. Lett., 2017, 5: 343
|
107 |
Han W Z, Demkowicz M J, Fu E G, et al. Effect of grain boundary character on sink efficiency [J]. Acta Mater., 2012, 60: 6341
|
108 |
Yang X L, Qiu W B, Chen L Q, et al. Tungsten-potassium: A promising plasma-facing material [J]. Tungsten, 2019, 1: 141
|
109 |
Xie Z M, Liu R, Miao S, et al. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature [J]. Sci. Rep., 2015, 5: 16014
|
110 |
Kurishita H, Arakawa H, Matsuo S, et al. Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement [J]. Mater. Trans., 2013, 54: 456
|
111 |
Tan X Y, Luo L M, Chen H Y, et al. Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation [J]. Sci. Rep., 2015, 5: 12755
|
112 |
Zhu H L. A theory of swelling due to void growth in irradiated materials (I): Neutral sinks [J]. Acta Phys. Sin., 1989, 38: 1443
|
|
朱慧珑. 辐照材料的肿胀理论(Ⅰ)——中性尾闾 [J]. 物理学报, 1989, 38: 1443
|
113 |
Bullough R, Hayns M R, Wood M H. Sink strengths for thin film surfaces and grain boundaries [J]. J. Nucl. Mater., 1980, 90: 44
|
114 |
Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy [J]. Annu. Rev. Mater. Res., 2014, 44: 241
|
115 |
Keys L K, Moteff J. Neutron irradiation and defect recovery of tungsten [J]. J. Nucl. Mater., 1970, 34: 260
|
116 |
Bowkett K M, Ralph B. The annealing of radiation damage in tungsten investigated by field-ion microscopy [J]. Proc. R. Soc., London1969, 312A: 51
|
117 |
Kim Y M, Galligan J M. Radiation damage and stage III defect annealing in thermal neutron irradiated tungsten [J]. Acta Metall., 1978, 26: 379
|
118 |
Hu X X, Koyanagi T, Fukuda M, et al. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation [J]. J. Nucl. Mater., 2016, 470: 278
|
119 |
Ferroni F, Yi X O, Arakawa K, et al. High temperature annealing of ion irradiated tungsten [J]. Acta Mater., 2015, 90: 380
|
120 |
Ferroni F. Electron microscopy and multi-scale modelling of radiation damage recovery in tungsten [D]. Oxford: University of Oxford, 2016
|
121 |
Swinburne T D, Arakawa K, Mori H, et al. Fast, vacancy-free climb of prismatic dislocation loops in bcc metals [J]. Sci. Rep., 2016, 6: 30596
|
122 |
Wilson K L, Baskes M I, Seidman D N. An in situ field-ion microscope study of the recovery behavior of ion-irradiated tungsten and tungsten alloys [J]. Acta Metall., 1980, 28: 89
|
123 |
Yi X O, Arakawa K, Du Y F, et al. High-temperature defect recovery in self-ion irradiated W-5 wt%Ta [J]. Nucl. Mater. Energy, 2019, 18: 93
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|