Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (7): 722-726     DOI:
Research Articles Current Issue | Archive | Adv Search |
Microstructure and room-temperature dry sliding wear behaviors of Mo2Ni3Si/γ-Ni metal silicide alloy
XU Yawei WANG Huaming
Laboratory of Laser Materials Processing and Manufacturing; School of Materials Science and Engineering; BeiHang University; Beijing 100083
Cite this article: 

XU Yawei WANG Huaming. Microstructure and room-temperature dry sliding wear behaviors of Mo2Ni3Si/γ-Ni metal silicide alloy. Acta Metall Sin, 2006, 42(7): 722-726 .

Download:  PDF(1131KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  γ-Ni toughened Mo2Ni3Si/γ-Ni metal silicide alloy consisting of Mo2Ni3Si primary dendrites and the interdendrtic γ/ Mo2Ni3Si eutectic was designed and fabricated by the lasmeltTM process. Room temperature wear properties were evaluated under metallic sliding wear test conditions and the wear mechanisms were discussed. Due to the unique and strong covalent-metallic bonding of Mo2Ni3Si Laves phase and the toughening effect of γ, Mo2Ni3Si /γ alloy performed excellent wear resistance. The wear mechanisms can be concluded as follows: the softer γ/ Mo2Ni3Si eutectic was preferential worn during wear process; due to the serious preferential abrasion, partial Mo2Ni3Si primary dendrites that protruded the worn surface were cracked and detached when losing the support of ductile matrix; in addition, the protruded Mo2Ni3Si primary dendrites prevent the matrix from continuous abrasion and control the total wear rate.
Key words:  Mo2Ni3Si      Metal silicide      wear      Laves phase      
Received:  21 October 2005     
ZTFLH:  TG331  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I7/722

[1] Liu C T,Zhu J H, Brady M P, McKamey C G, Pike L M. Intermetallics, 2000; 8: 1119
[2] Cruse T A,Newkirk J W.Mater Sci Eng,1997;A239-240:410
[3] Sauthoff G.Intermetallics, 2000; 8: 1101
[4] Wang H M,Luan D Y,Zhang L Y.Scr Mater,2003;48:1179
[5] Tang H B,Fang Y L,Wang H M. Acta Mater, 2004; 52:1773
[6] Lu X D, Wang H M. J Alloys Compd, 2003; 359: 287
[7] Lu X D, Wang H M. Appl Surf Sci, 2003; 214: 190
[8] Lu X D, Wang H M. Acta Mater, 2004; 52: 5419
[9] Duan G, Wang H M. Scr Mater, 2002; 46: 101
[10] Ming Qian, Lim L C, Chen Z D. Surf Coat Technol, 1998;106: 174
[11] Wang H M, Xia W M, Jin Y S. Wear, 1996; 195: 47
[12] Sharif A A, Misra A, Petrovic J J, Mitchell T E. Intermetallics, 2001; 9: 869
[13] Sadananda K, Feng C R, Mitra R, Deevi S C. Mater Sci Eng, 1999; A261: 223
[14] Schneibel J H, Liu C T, Easton D S,Carmichael C A.Mater Sci Eng, 1999; A261: 78
[15] Chu F, Thoma D J,McClellan K J,Peralta P. Mater Sci Eng, 1999; A261: 44
[16] Wang H M, Duan G. Mater Sci Eng, 2002; A336: 117A
[1] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[2] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[3] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[4] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[5] ZHANG Shihong, HU Kai, LIU Xia, YANG Yang. Corrosion-Erosion Mechanism and Research Prospect of Bare Materials and Protective Coatings for Power Generation Boiler[J]. 金属学报, 2022, 58(3): 272-294.
[6] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[7] CUI Hongzhi, JIANG Di. Research Progress of High-Entropy Alloy Coatings[J]. 金属学报, 2022, 58(1): 17-27.
[8] CHEN Jianjun, DING Yutian, WANG Kun, YAN Kang, MA Yuanjun, WANG Xingmao, ZHOU Shengming. Effects of Laves Phase on Burst Behavior of GH3625 Superalloy Pipe During Hot Extrusion[J]. 金属学报, 2021, 57(5): 641-650.
[9] BI Jiazi, LIU Xiaobin, LI Ran, ZHANG Tao. Tribological Properties of Polyalphaolefin (PAO6) Lubricant Modified with Particles Additives of Metallic Glass[J]. 金属学报, 2021, 57(4): 559-566.
[10] LI Xiaoqian, WANG Fuguo, LIANG Aimin. Effect of Spraying Process on Microstructure and Tribological Properties of Ta2O5 In Situ Composite Nanocrystalline Ta-Based Coatings[J]. 金属学报, 2021, 57(2): 237-246.
[11] ZHAO Wanxin, ZHOU Zheng, HUANG Jie, YANG Yange, DU Kaiping, HE Dingyong. Microstructure and Frictional Wear Behavior of FeCrNiMo Alloy Layer Fabricated by Laser Cladding[J]. 金属学报, 2021, 57(10): 1291-1298.
[12] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[13] SUN Xinjun,LIU Luojin,LIANG Xiaokai,XU Shuai,YONG Qilong. TiC Precipitation Behavior and Its Effect on Abrasion Resistance of High Titanium Wear-Resistant Steel[J]. 金属学报, 2020, 56(4): 661-672.
[14] WEI Shizhong, XU Liujie. Review on Research Progress of Steel and Iron Wear-Resistant Materials[J]. 金属学报, 2020, 56(4): 523-538.
[15] WU Xiang,ZUO Xiurong,ZHAO Weiwei,WANG Zhongyang. Mechanism of TiN Fracture During the Tensile Process of NM500 Wear-Resistant Steel[J]. 金属学报, 2020, 56(2): 129-136.
No Suggested Reading articles found!