Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (4): 431-436     DOI:
Research Articles Current Issue | Archive | Adv Search |
SINTERING DENSIFICATION, MICROSTRUCTURE AND TRANSFORMATION BEHAVIOR OFAl2O3/ZrO2( Y2O3)COMPOSITES
Ma W M
沈阳大学
Cite this article: 

Ma W M. SINTERING DENSIFICATION, MICROSTRUCTURE AND TRANSFORMATION BEHAVIOR OFAl2O3/ZrO2( Y2O3)COMPOSITES. Acta Metall Sin, 2006, 42(4): 431-436 .

Download:  PDF(1049KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In this paper, preparation of composites Al2O3/ZrO2(Y2O3) by vacuum sintering was studied. The effects of the contents of ZrO2(3Y) and ZrO2(2Y) on the sintering densification, microstructure and transformation behavior in detail were analyzed. The effect of the content of ZrO2(Y2O3) on the microstructure of the composites was also investigated, and it was found that there is a critical value of the content. The results also show that when the contents of ZrO2(Y2O3) were 15vol% and 20vol%, the relative densities of the composites Al2O3/ZrO2(Y2O3) were 99.6% and 98.5%, respectively, and the corresponding average grains of ZrO2(Y2O3) were 1.1μm and 1.8μm. In addition, the transformation quantities of the samples before and after their fracture were =43.8vol% and =18.4vol%.
Key words:  composites Al2O3/ZrO2(Y2O3)      vacuum sintering      densification      microstructure      transformation behavio     
Received:  08 July 2005     
ZTFLH:  TQ174.75  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I4/431

[1] Mitra B L, Biswas N C, Aggarwal P S. Bull Mater Sci, 1992; 15(2): 131
[2] Ono T, Nagata K. J Mater Sci, 1989; 24: 1974
[3] Lange F. Mater Eng, 1981; 93(4): 102
[4] Tuan W H, Chen R Z, Wang T C, Kuo P S. J Eur Ceram Soc, 2002; 22: 2827
[5] LLorca J, Pastor Y J, Poza P. J Am Ceram Soc, 2004; 87: 633
[6] Rao P G, Iwase M, Kondoh I, Inoue T. Scr Mater, 2003; 48: 437
[7] Ge Q L, Zhou Y, Lei T Q. J Chin Ceram Soc, 1993; 4: 15 (葛启录,周 玉,雷廷权.硅酸盐通报, 1993;4:15)
[8] Ma W M, Xiu Z M, Wen L, Sun X D. Acta Metll Sin, 2005; 41: 93 (马伟民,修稚萌,闻雷,孙旭东.金属学报,2005;41:93)
[9] Cahoon H P, Cristensen C L. J Amer Ceram Soc, 1976; 59: 49
[10] Kreher, Pompe W. J Mater Sci, 1981; 16: 694
[11] French J D. J Am Ceram Soc, 1990; 73: 2508
[12] Sumita S. J Jpn Ceram Soc, 1991; 99: 538
[13] Yan M F. Mater Sci Eng, 1983; 60: 275
[14] Guo S J. Theory of Powder and Sintering. Beijing: Metallurgical Industry Press, 2002: 262 (果世驹.粉末烧结理论.北京:冶金工业出版社,2002:262)
[15] Shi J L, Li B S, Lu Z L, Huang X X, Yan D S. Chin J Mater Res, 1996; 10: 51 (施剑林,李包顺,陆正兰,黄校先,严东生.材料研究学报, 1996;10:51)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!