Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (4): 437-442     DOI:
Research Articles Current Issue | Archive | Adv Search |
SIMULATION OF MACROSTRUCTURE EVOLUTION IN Ti-(45~48)at%Al ALLOY INGOT
D R Liu
哈尔滨工业大学材料科学与工程学院
Cite this article: 

D R Liu. SIMULATION OF MACROSTRUCTURE EVOLUTION IN Ti-(45~48)at%Al ALLOY INGOT. Acta Metall Sin, 2006, 42(4): 437-442 .

Download:  PDF(1026KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  ABSTRACT Grain structure modeling of Ti- (45~48) at% Al alloy ingots has been carried out by using a new cellular automaton method coupled with macroscopic heat transfer calculation. Cells are divided into primary and peritectic ones. Different cells take the different solidification path. By the new method, the formation of peritectic phases can be shown graphically throughout solidification. The formation of shrinkage cavity at the top of the ingot is included in the calculation. A special-moving-allocation technique is designed to minimize the computation costs and memory size associated with a large number of cells. The potentiality of the present model is demonstrated by comparing the simulated results with the experimental one. The influences of convection and initial alloy composition on the grain structures are studied. The mechanisms producing these results are discussed. The simulated results indicate that the size of equiaxed zone increases with increasing the convection coefficient and alloy composition. And the number of peritectic phases decreases as the alloy composition decreases.
Key words:  Ti- (45~48) at% Al alloy ingot      peritectic phase solidification      cellular automaton      grain structure si     
Received:  20 June 2005     
ZTFLH:  TG27  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I4/437

[1] Brown S G R, Spittle J A. Mater Sci Technol, 1989; 5: 362
[2] Rappaz M, Gandin C A. Ada Metall Mater, 1993; 41: 345
[3] Gandin C A, Rappaz M. Acta Metall Mater, 1994; 42: 2233
[4] Gandin C A, Charbon C. ISIJ Int, 1995; 35: 651
[5] Gandin C A, Desbiolles J L, Rappaz M, Thevoz P. Metall Mater Trans, 1999; 30A: 3153
[6] Kurz W, Giovanola B, Trivedi R. Acta Metall, 1986; 823
[7] Du Q, Li D Z, Li Y Y. J Mater Sci Technol, 2000; 16: 568
[8] Li D Z, Du Q, Hu Z Y, Li Y Y. Acta Metall Sin, 1999; 35: 1201 (李殿中,杜强,胡志勇,李依依.金属学报,1999;35:1201)
[9] Xu Q Y, Feng W M, Liu B C, Xiong S M. Acta Metall Sin, 2002; 38: 799 (许庆彦,冯伟明,柳百成,熊守美.金属学报, 2002;38(8): 799)
[10] Bosze W P, Trivedi R. Metall Trans, 1974; 5: 511
[11] Wang T M. PhD Dissertation, Dalian University of Science and Technology, 2000 (王同敏.大连理工大学博士学位论文, 2000)
[12] Jacot A, Maijer D, Cockcroft S. Metall Mater Trans, 2000; 31A: 2059
[13] Jung I S, Kim M C, Lee J H, Oh M H, Wee D M. Inter- metallics, 1999; 7: 1247
[14] Su Y Q, Liu C, Li X Z, Guo J J, Li B S, Jia J, Fu H Z. Intermetallics, 2005; 13: 267
[15] Santos C A, Quaresma J M V, Garcia A. J Alloys Compd. 2001; 319: 174
[16] Gu J P, Beckermann C. Metall Mater Trans, 1999; 30A: 1357
[1] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[2] Mingfang ZHU, Like XING, Hui FANG, Qingyu ZHANG, Qianyu TANG, Shiyan PAN. Progresses in Dendrite Coarsening During Solidification of Alloys[J]. 金属学报, 2018, 54(5): 789-800.
[3] Tongmin WANG, Jingjing WEI, Xudong WANG, Man YAO. Progress and Application of Microstructure Simulation of Alloy Solidification[J]. 金属学报, 2018, 54(2): 193-203.
[4] Lei WEI, Yongqing CAO, Haiou YANG, Xin LIN, Meng WANG, Weidong HUANG. Numerical Simulation of Anomalous Eutectic Growth of Ni-Sn Alloy Under Laser Remelting of Powder Bed[J]. 金属学报, 2018, 54(12): 1801-1808.
[5] Mingfang ZHU, Qianyu TANG, Qingyu ZHANG, Shiyan PAN, Dongke SUN. CELLULAR AUTOMATON MODELING OF MICRO-STRUCTURE EVOLUTION DURING ALLOY SOLIDIFICATION[J]. 金属学报, 2016, 52(10): 1297-1310.
[6] Rui CHEN, Qingyan XU, Qinfang WU, Huiting GUO, Baicheng LIU. NUCLEATION MODEL AND DENDRITE GROWTH SIMULATION IN SOLIDIFICATON PROCESS OF Al-7Si-Mg ALLOY[J]. 金属学报, 2015, 51(6): 733-744.
[7] ZHANG Lei, ZHAO Honglei, ZHU Mingfang. SIMULATION OF SOLIDIFICATION MICROSTRUC-TURE OF SPHEROIDAL GRAPHITE CAST IRON USING A CELLULAR AUTOMATON METHOD[J]. 金属学报, 2015, 51(2): 148-158.
[8] ZHAO Jiuzhou, LI Lu, ZHANG Xianfei. DEVELOPMENT OF CELLULAR AUTOMATON MODELS AND SIMULATION METHODS FOR SOLIDIFICATION OF ALLOYS[J]. 金属学报, 2014, 50(6): 641-651.
[9] LI Zhengyang, ZHU Mingfang, DAI Ting. MODELING OF MICROPOROSITY FORMATION IN AN Al-7%Si ALLOY[J]. 金属学报, 2013, 49(9): 1032-1040.
[10] . EFFECT OF FORCED FLOW ON THREE DIMENSIONAL DENDRITIC GROWTH OF Al-Cu ALLOYS[J]. 金属学报, 2012, 48(5): 615-620.
[11] SHI Yufeng XU Qingyan LIU Baicheng. SIMULATION OF EUTECTIC GROWTH IN DIRECTIONAL SOLIDIFICATION BY CELLULAR AUTOMATON METHOD[J]. 金属学报, 2012, 48(1): 41-48.
[12] JIANG Hongxiang ZHAO Jiuzhou. A THREE-DIMENSIONAL CELLULAR AUTOMATON SIMULATION FOR DENDRITIC GROWTH[J]. 金属学报, 2011, 47(9): 1099-1104.
[13] SHI Yufeng XU Qingyan GONG Ming LIU Baicheng. SIMULATION OF NH4Cl-H2O DENDRITIC GROWTH IN DIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2011, 47(5): 620-627.
[14] ZHI Ying LIU Xianghua YU Hailiang WANG Zhenfan. SIMULATION OF MICROSTRUCTURE AND PROPERTIES EVOLUTION OF MICRO ALLOYED STEEL DURING HOT DEFORMATION BY CELLULAR AUTOMATON[J]. 金属学报, 2011, 47(11): 1396-1402.
[15] SU Bin HAN Zhiqiang ZHAO Yongrang SHEN Bingzhen ZHANG Lianzhen LIU Baicheng. CA MODELING OF PHASE TRANSFORMATION IN ASTM A216 WCA CAST STEEL DURING SOLIDIFICATION AND COOLING PROCESS[J]. 金属学报, 2011, 47(11): 1388-1395.
No Suggested Reading articles found!