|
|
Microstructure Evolution of 316L Stainless Steel During Laser Rapid Forming |
Lin X |
西北工业大学凝固技术国家重点实验室 |
|
Cite this article:
Lin X. Microstructure Evolution of 316L Stainless Steel During Laser Rapid Forming. Acta Metall Sin, 2006, 42(4): 361-368 .
|
Abstract The solidification behavior and the morphological evolution of 316L stainless steel during laser rapid forming (LRF) were investigated. It was found that, there shows a complete austenitic structure in the LRF sample within the processing parameters of this study, there was continued epitaxial growth of the g phase of the fine columnar dendrites from the substrate, with the <100> crystallographic orientation leaning to, even parallel to the deposition direction. There also exist a thin layer in which the dendrites grow along the laser scaning direction at the top of the LRF sample. Clad layer bandings were found in the samples; however, the continuity of the growth of the columnar dendrites was not upset. The growth morphology of primary dendrites can be predicted by the microstructure selection models based on the maximum interface temperature criterion. The formation of the clad layer bandings and the epitaxial growth characteristic during LRF are also explained by the criteria for planar interface instability and dendritic growth theory and the columnar to equiaxed transition model. There shows an reasonable agreement between the theoretic analysis and the experimental results.
|
Received: 27 June 2005
|
|
[1] Lewis G K, Nemec R B, Milewski J O, Thoma D L, Barbe M R, Cremers D A. In: Proc ICALEO '94. Orlando: Laser Institute of America, 1994: 17 [2] Keicher D M, Smugeresky J E, Romero J A, Griffith M L, Harwell L D. Proc SPIE, 1997; 2993: 91 [3] Schlienger E, Dimos D, Griffith M, Michael J, Oliver M, Romero T, Smugeresky J. In: Proc 3rd Pacific Rim Int Conf on Advanced Materials and Processing, Vol I. War-randale: TMS, 1998: 1581 [4] Mazumder J, Schifferer A, Choi J. Mater Res Innovat, 1999; 3: 118 [5] Link G R, Fessler J, Nickel A, Prinz F. Mater Manuf Process, 1992; 13: 263 [6] Gaumann M, Henry S, Cleton F, Wagniere J D, Kurz W. Mater Sci Eng, 1999; A271: 232 [7] Li Y M, Yang H O, Lin X, Huang W D, Li J G, Zhou Y H. Mater Sci Eng, 2003; A360: 18 [8] Zhang C L. Master Thesis, Beihang University, 2002 (张长利.北京航空航天大学硕士学位论文, 2002) [9] Zhang Y Z, Xi M Z, Gao S Y, Shi L K. J Mate Proc Technol, 2003; 142: 582 [10] Zhong M L, Liu W J, Ning G G, Yang L, Chen Y X. J Mater Process Technol, 2004; 147: 167 [11] Wu X H, Liang J, Mei J F, Mitchell C, Goodwin P S, Voice W. Mater Design, 2004; 25: 137 [12] Banerjee R, Collins P C, Genc A, Fraser H L. Mater Sci Eng, 2003; A358: 343 [13] Banerjee R, Collins P C, Bhattacharyya D, Banerjee S, Fraser H L. Acta Mater, 2003; 51: 3277 [14] Rappaz M, David S A, Vitek J M, Boatner L A. Metall Trans, 1989; 20A: 1125 [15] Kurz W, Fisher D J. Fundamentals of Solidification. 3rd edition, Aedermansdorf, Switzerland: Trans Tech Publications, 1992 [16] Li Y M, Liu Z X, Yang H O, Lin X, Huang W D, Li J G. Aeta Metall Sin,2003;39:521 (李延民,刘振侠,杨海欧,林 鑫,黄卫东,李建国.金属学 报,2003;39:521) [17] Kurz W, Giovanola B, Trivedi R. Ada Metall, 1986; 34: 823 [18] Rappaz M, David S A, Vitek J M, Boatner L A. Metall Trans, 1990; 21A: 1767 [19] Aziz M J. J Appl Phys, 1982; 53: 1158 [20] Boetinger W J, Corriel S R, Sekerka R F. Mater Sci Eng, 1984; 65: 27 [21] Takeuchi S. The Properties of Liquid Metals. London: Taylor and Francis, 1973 [22] Hunziker O. Ada Mater, 2001; 49: 4191 [23] Langer J D. Rev Mod Phys, 1980; 52: 1 [24] Huang W D. Geng X G, Zhou Y H. J Cryst Growth, 1993; 134: 105 [25] Lin X, Huang W D, Feng J, Li T, Zhou Y H. Ada Mater, 1999; 47: 3271 [26] Lu S Z, Hunt J D, Gilgien P, Kurz W. Ada Metall Mater, 1994; 42: 1653 [27] Lin X, Li Y M, Wang M, Feng L P, Chen J, Huang W D. Sci Chin, 2003; 46E: 475q |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|