Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (4): 361-368     DOI:
Research Articles Current Issue | Archive | Adv Search |
Microstructure Evolution of 316L Stainless Steel During Laser Rapid Forming
Lin X
西北工业大学凝固技术国家重点实验室
Cite this article: 

Lin X. Microstructure Evolution of 316L Stainless Steel During Laser Rapid Forming. Acta Metall Sin, 2006, 42(4): 361-368 .

Download:  PDF(1067KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The solidification behavior and the morphological evolution of 316L stainless steel during laser rapid forming (LRF) were investigated. It was found that, there shows a complete  austenitic structure in the LRF sample within the processing parameters of this study, there was continued epitaxial growth of the g phase of the fine columnar dendrites from the substrate, with the <100> crystallographic orientation leaning to, even parallel to the deposition direction. There also exist a thin layer in which the dendrites grow along the laser scaning direction at the top of the LRF sample. Clad layer bandings were found in the samples; however, the continuity of the growth of the columnar dendrites was not upset. The growth morphology of primary  dendrites can be predicted by the microstructure selection models based on the maximum interface temperature criterion. The formation of the clad layer bandings and the epitaxial growth characteristic during LRF are also explained by the criteria for planar interface instability and dendritic growth theory and the columnar to equiaxed transition model. There shows an reasonable agreement between the theoretic analysis and the experimental results.
Key words:  laser rapid forming      stainless steel      solidification      microstructure      
Received:  27 June 2005     
ZTFLH:  TG24  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I4/361

[1] Lewis G K, Nemec R B, Milewski J O, Thoma D L, Barbe M R, Cremers D A. In: Proc ICALEO '94. Orlando: Laser Institute of America, 1994: 17
[2] Keicher D M, Smugeresky J E, Romero J A, Griffith M L, Harwell L D. Proc SPIE, 1997; 2993: 91
[3] Schlienger E, Dimos D, Griffith M, Michael J, Oliver M, Romero T, Smugeresky J. In: Proc 3rd Pacific Rim Int Conf on Advanced Materials and Processing, Vol I. War-randale: TMS, 1998: 1581
[4] Mazumder J, Schifferer A, Choi J. Mater Res Innovat, 1999; 3: 118
[5] Link G R, Fessler J, Nickel A, Prinz F. Mater Manuf Process, 1992; 13: 263
[6] Gaumann M, Henry S, Cleton F, Wagniere J D, Kurz W. Mater Sci Eng, 1999; A271: 232
[7] Li Y M, Yang H O, Lin X, Huang W D, Li J G, Zhou Y H. Mater Sci Eng, 2003; A360: 18
[8] Zhang C L. Master Thesis, Beihang University, 2002 (张长利.北京航空航天大学硕士学位论文, 2002)
[9] Zhang Y Z, Xi M Z, Gao S Y, Shi L K. J Mate Proc Technol, 2003; 142: 582
[10] Zhong M L, Liu W J, Ning G G, Yang L, Chen Y X. J Mater Process Technol, 2004; 147: 167
[11] Wu X H, Liang J, Mei J F, Mitchell C, Goodwin P S, Voice W. Mater Design, 2004; 25: 137
[12] Banerjee R, Collins P C, Genc A, Fraser H L. Mater Sci Eng, 2003; A358: 343
[13] Banerjee R, Collins P C, Bhattacharyya D, Banerjee S, Fraser H L. Acta Mater, 2003; 51: 3277
[14] Rappaz M, David S A, Vitek J M, Boatner L A. Metall Trans, 1989; 20A: 1125
[15] Kurz W, Fisher D J. Fundamentals of Solidification. 3rd edition, Aedermansdorf, Switzerland: Trans Tech Publications, 1992
[16] Li Y M, Liu Z X, Yang H O, Lin X, Huang W D, Li J G. Aeta Metall Sin,2003;39:521 (李延民,刘振侠,杨海欧,林 鑫,黄卫东,李建国.金属学 报,2003;39:521)
[17] Kurz W, Giovanola B, Trivedi R. Ada Metall, 1986; 34: 823
[18] Rappaz M, David S A, Vitek J M, Boatner L A. Metall Trans, 1990; 21A: 1767
[19] Aziz M J. J Appl Phys, 1982; 53: 1158
[20] Boetinger W J, Corriel S R, Sekerka R F. Mater Sci Eng, 1984; 65: 27
[21] Takeuchi S. The Properties of Liquid Metals. London: Taylor and Francis, 1973
[22] Hunziker O. Ada Mater, 2001; 49: 4191
[23] Langer J D. Rev Mod Phys, 1980; 52: 1
[24] Huang W D. Geng X G, Zhou Y H. J Cryst Growth, 1993; 134: 105
[25] Lin X, Huang W D, Feng J, Li T, Zhou Y H. Ada Mater, 1999; 47: 3271
[26] Lu S Z, Hunt J D, Gilgien P, Kurz W. Ada Metall Mater, 1994; 42: 1653
[27] Lin X, Li Y M, Wang M, Feng L P, Chen J, Huang W D. Sci Chin, 2003; 46E: 475q
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!