Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (9): 985-988     DOI:
Research Articles Current Issue | Archive | Adv Search |
PREPARATION AND MICROSTRUCTURE CHARACTERISTICS OF SUPER-HARD NANOCOMPOSITE Ti-Si-C-N COATING DEPOSITED BY PULSED DC PCVD
GUOYan; CHANG Gengrong; MA Shengli; XU Kewei
State Key Laboratory for Mechanical Behaviors of Materials; Xi'an Jiaotong University; Xi'an 710049
Cite this article: 

GUOYan; CHANG Gengrong; MA Shengli; XU Kewei. PREPARATION AND MICROSTRUCTURE CHARACTERISTICS OF SUPER-HARD NANOCOMPOSITE Ti-Si-C-N COATING DEPOSITED BY PULSED DC PCVD. Acta Metall Sin, 2005, 41(9): 985-988 .

Download:  PDF(263KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Using an industrial pulsed DC plasma chemical vapor deposition set-up, Ti-Si-C-N coatings were deposited on substrate of high speed steel. The effect of SiCl4 flow rate on chemical composition, microstructure and phases in Ti-Si-C-N coatings was explored by means of XRD, XPS, TEM and SEM. It is suggested that Ti-Si-C-N coatings are of nanocomposite structure composed of nc-Ti(C, N)/a-C/a-Si3N4. The crystalline sizes are in the range of 2-25 nm. When nitrogen content in the coatings was very low, Ti(C, N) changed to TiC and the surface morphologies of Ti-Si-C-N coatings changed from granular grains to strip-shaped grains.
Key words:  Ti-Si-C-N      PCVD      nanocomposite coating      microstructure      
Received:  31 January 2005     
ZTFLH:  TG174.44  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I9/985

[1] Ma D Y,Ma S L, Xu K W. Surf Coat Technol, 2004; 184:182
[2] Ma D Y, Ma S L, Xu K W.Acta Metall Sin,2004;40: 1037 (马大衍,马胜利,徐可为.金属学报, 2004;40:1037)
[3] Ma D Y, Ma S L , Xu K W. Acta Metall Sin,2003;39: 1047 (马大衍,马胜利,徐可为.金属学报, 2003;39:1047)
[4] Heim D, Holler F, Mitterer C. Surf Coat Technol,1999; 116: 530
[5] Veprek S. Thin Solid Films,1995;268:64
[6] Ma D Y, Ma S L, Xu K W. Tribology, 2003; 215: 476 (马大衍,马胜利,徐可为.摩擦学报,2003;23:476)
[7] Ma S L, Ma D Y, Xu K W. Tribology, 2003; 23: 179 (马胜利,马大衍,徐可为.摩擦学报, 2003;23:179)
[8] Veprek S. Vaccum, 2002;67:443
[9] Ma S L, Xu K W. Acta Metall Sin, 2004;40:669 (马胜利,徐可为.金属学报,2004;40:669)
[10] Ma S L, Xu K W, Jie W. J Vac Sci Technol, 2004; 22B: 1694
[11] Karvankova P. Doctor Degree Thesis,Technical Univer sity Munich, Germany, 2003
[12] Niu X P. Master Degree Thesis, Xi'an Jiaotong University, 2004 (牛新平.西安交通大学硕士学位论文, 2004)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!