Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (6): 669-    DOI:
Research Articles Current Issue | Archive | Adv Search |
Characterization of Microstructure and Hardness of PCVD DepositedTi1-xAlx N Hard Coatings
MA Shengli; XU Jian; JIE Wanqi; XU Kewei; M. G. J. Veprek--Heijman;S. Veprek
State--Key Laboratory for Mechanical Behavior of Materials; Xi' an Jiaotong University; Xi' an 710049
Cite this article: 

MA Shengli; XU Jian; JIE Wanqi; XU Kewei; M. G. J. Veprek--Heijman; S. Veprek. Characterization of Microstructure and Hardness of PCVD DepositedTi1-xAlx N Hard Coatings. Acta Metall Sin, 2004, 40(6): 669-.

Download:  PDF(8293KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Ti1-xAlxN hard coatings have been synthesized by direct current (dc) plasma--enhanced chemical vapor deposition (PCVD). Dependences of aluminum content and annealing at elevated temperatures on the microstructure and hardness of Ti1-xAlxN coatings were investigated. The results show that plastic hardness measured by means of indentation test increases with x$increasing up to 0.83 and then decreases. XRD measurements indicate that the coatings with x<0.83 are fcc. solid solution with 3--10 nm grain scale. When x=0.83, relatively soft h--AlN phase is precipitated in Ti1-xAlxN coating, while the coating hardness begins a dramatical decrease. Furthermore, the nano--crystalline structure and high hardness of the coating can keep up to 900℃, which indicates the synthesized coating having good thermal stability.
Key words:  (Ti      Al)N hard coating      microstructure      hardness      
Received:  05 June 2003     
ZTFLH:  TG113  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I6/669

[1] Leyens C, Peters M, Hovsepian P Eh. Surf Coat Technol,2002; 155: 103
[2] Suchentrunk R, Staudigl G, Jonke D, Fuesser H J. Surf Coat Technol, 1997; 97: 1
[3] Veprek S, Arogn A. J Vac Sci Technol, 2002; B20: 650
[4] Ma S L, Li Y H, Nan J M, Xu K W. Trans Nonferrous Met Soc Chin, 2000; 10: 489
[5] Salbach B, Schmidt K, Wang M. Thin Solid Films, 1990;188: 267
[6] Veprek S, Reiprich S, Li S Z. Appl Phys Lett, 1995; 66:2640
[7] Heim D, Hochreiter R. Surf Coat Technol, 1998; 98: 1553
[8] Ma S L, Jie W Q, Xu K W. Chin Vac Sci Technol, 2002;22: 438
[9] Schaffer E, Kleer G. Surf Coat Technol, 2000; 133--134:215
[10] Prange R, Cremer R, Neuschutz D. Surf Coat Technol,2000; 133--134: 208
[11] Veprek S, Reiprich S. Thin Solid Films, 1995; 268: 64
[12] Ma S L, Ma D Y, Xu K W. J Vac Sci Technol A(in press)
[13] Ma S L, Xu J, Veprek--Heijman M G J, Veprek S, Xu K W. Surf Coat Technol(in press)
[14] Oliver W C, Pharr G M. J Mater Res, 1992; 7: 1564
[15] Yoon S Y, Lee K O, Kang S S, Kim K H. J Mater Proc Technol, 2002;130--131: 260
[16] Veprek S, Argon A S. Surf Coat Technol, 2001; 146--147:175
[17] Holubar P, Jilek M, Sima M. Surf Coat Technol, 2000;133--134: 145q
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!