Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (1): 1-11    DOI: 10.11900/0412.1961.2024.00250
Overview Current Issue | Archive | Adv Search |
Revisiting the Development of Eutectic High-Entropy Alloys over the Past Decade (2014-2024): Design, Manufacturing, and Applications
WANG Zhijun1(), BAI Xiaoyu1, WANG Jianbin1, JIANG Hui2, JIAO Wenna3, LI Tianxin4, LU Yiping3,5()
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 School of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
3 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
4 College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
5 Liaoning Engineering Research Center of High-Entropy Alloy Materials, Dalian University of Technology, Dalian 116024, China
Cite this article: 

WANG Zhijun, BAI Xiaoyu, WANG Jianbin, JIANG Hui, JIAO Wenna, LI Tianxin, LU Yiping. Revisiting the Development of Eutectic High-Entropy Alloys over the Past Decade (2014-2024): Design, Manufacturing, and Applications. Acta Metall Sin, 2025, 61(1): 1-11.

Download:  HTML  PDF(3081KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Eutectic alloys are a class of multi-phase materials named for their formation through eutectic reactions during solidification. They have a long history as the most widely used casting alloys. High-entropy alloys (HEAs), on the other hand, are a novel class of multi-principal element alloys that have rapidly developed since their conceptualization in 2004. Combining the advantages of eutectic alloys and HEAs, eutectic high-entropy alloys (EHEAs) were first proposed in 2014. Over a decade, EHEAs have been systematically investigated by focusing on alloy design, microstructure/performance optimization, large-scale fabrication, and potential applications. Their unique microstructures and excellent comprehensive properties have made EHEAs promising materials across various domains, garnering significant attention in recent years. By revisiting the advances in composition design, manufacturing, and applications of EHEAs over the past decade, this review offered insights into future trends and developments in this rapidly evolving field.

Key words:  eutectic high-entropy alloy      composition design      microstructure control      material manufacturing      application     
Received:  23 July 2024     
ZTFLH:  TG139  
Corresponding Authors:  WANG Zhijun, professor, Tel: 13484671484, E-mail: zhjwang@nwpu.edu.cn;
LU Yiping, professor, Tel: (0411)84709400, E-mail: luyiping@dlut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00250     OR     https://www.ams.org.cn/EN/Y2025/V61/I1/1

Fig.1  Strategies to design eutectic high-entropy alloys (EHEAs)
(a) calculated pseudo-binary-phase diagram for FeCoNiCrNb x alloys[22] (b1-b4) microstructures of (CoCrFeNi)Mx EHEAs obtained by the simple mixing method[23] (c) empirical design criteria for EHEAs based on the relationship between valence electron concentration (VEC) and atomic size difference (δr)[25] (d) empirical design criteria for EHEAs based on the relationship between mixed enthalpy of solid solution (ΔHmixss) and VEC of solid solution (VECss) (IMC—intermetallic compound)[26]
Fig.2  Schematic diagram of designing EHEAs with machine learning[27] (xi is the ith input parameter, y is the output parameter. The f1(x) and f2(x) are the internal layer functions in an artificial neural network model)
Fig.3  Typical solidification microstructures of EHEAs
(a) ultrafine eutectic microstructure (A and B show the dendritic and inter-dendritic regions, respectively)[34]
(b) lamellar microstructure[38]
(c) mixed lamellar/irregular microstructure[39]
Fig.4  Microstructures of EHEAs tailored by various processing methods
(a) BSE image, EBSD phase, and Inverse pole figures (IPFs) of the directionally solidified Al19Fe20Co20Ni41 EHEA, showing a herringbone-like eutectic microstructure (BEC—branched eutectic colonies, AEC—aligned eutectic colonies)[48]
(b) EBSD IPF map of as-printed AlCoCrFeNi2.1 EHEA, showing ultrafine nanolamellar eutectic colonies with different crystallographic orientations (Inset shows the EBSD phase map)[50]
(c) EBSD phase map of the anomalous eutectic structure in remelted additive manufactured Ni32Co30Cr10Fe10Al18 EHEA[51]
(d) EBSD phase map of equiaxed ultrafine-grained structure in the 90% cold-rolled AlCoCrFeNi2.1 EHEA after isothermal annealing[53]
(e) SEM image and EBSD phase map of the AlCoCrFeNi2.1 EHEA cold-rolled by 84%-86% followed by non-isothermally annealing, showing heterogeneous duplex microstructure consisting of lamellar and ultrafine-grained structure[52]
(f) IPFs of the phase-selectively recrystallized Ni30Co30Cr10Fe10Al18W2 EHEA, showing the microstructure with a fully recrystallized fcc phase embedded in the skeleton of a B2 phase[54]
Fig.5  Mechanical properties of EHEAs with different microstructures
(a) directionally solidified Al19Fe20Co20Ni41 EHEA with herringbone-like microstructure (Inset shows the strain-hardening rate curves. MDIH and MBIH refer to multi-slip dislocation-induced hardening and microband-induced hardening, respectively; εU—uniform strain; σy—yield strength of Al19Fe20Co20Ni41 EHEA; σUTS—ultimate tensile strength of Al19Fe20Co20Ni41 EHEA)[48]
(b) as-printed and annealed AlCoCrFeNi2.1 EHEA with ultrafine nanolamellar structure (Inset shows the schematic of a dogbone-shaped specimen under tensile loading. σu—ultimate tensile strength of AlCoCrFeNi2.1 EHEA; σ0.2—yield strength of AlCoCrFeNi2.1 EHEA)[50]
(c) additive manufactured Ni32Co30Cr10Fe10Al18 EHEA with anomalous eutectic structure[51]
(d) ultrafine-grained AlCoCrFeNi2.1 EHEA (CR—cold rolling)[53]
(e) heterogeneous-grained AlCoCrFeNi2.1 EHEA (Inset shows the loading-unloading-reloading behavior of the DPHL700 and the as-cast EHEA, DPHL—dual-phase heterogeneous lamella, UFG EHEA—ultrafine-grain EHEA, CH EHEA—complex and hierarchical EHEA)[52]
(f) phase-selectively recrystallized Ni30Co30Cr10Fe10Al18W2 EHEA (AC—as-cast, FR—fully recrystallization, PSR—phase-selective recrystallization)[54]
Fig.6  Examples of industrial production of EHEA
(a) ton-class EHEA ingot prepared by vacuum induction melting
(b) 200 mm wide cold-rolled sheet
(c) large marine propeller
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
2 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Mater. Sci. Eng., 2004, A375-377: 213
3 Miracle D B, Miller J D, Senkov O N, et al. Exploration and development of high entropy alloys for structural applications[J]. Entropy, 2014, 16: 494
4 Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Mater., 2013, 61: 5743
5 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19: 698
6 Wu S Y, Qiao D X, Zhao H L, et al. A novel NbTaW0.5(Mo2C) x refractory high-entropy alloy with excellent mechanical properties[J]. J. Alloys Compd., 2021, 889: 161800
7 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. J. Alloys Compd., 2011, 509: 6043
8 Lilensten L, Couzinié J P, Perrière L, et al. Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms[J]. Acta Mater., 2018, 142: 131
9 Oses C, Toher C, Curtarolo S. High-entropy ceramics[J]. Nat. Rev. Mater., 2020, 5: 295
10 Akrami S, Edalati P, Fuji M, et al. High-entropy ceramics: Review of principles, production and applications[J]. Mater. Sci. Eng., 2021, R146: 100644
11 Huang Y, Yeh J W, Yang A C M. “High-entropy polymers”: A new route of polymer mixing with suppressed phase separation[J]. Materialia, 2021, 15: 100978
12 Tiwary C S, Pandey P, Sarkar S, et al. Five decades of research on the development of eutectic as engineering materials[J]. Prog. Mater. Sci., 2022, 123: 100793
13 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
14 Gao X Z, Lu Y P, Zhang B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Mater., 2017, 141: 59
15 Chang I, Cai Q. From simple binary to complex multicomponent eutectic alloys[J]. Prog. Mater. Sci., 2022, 123: 100779
16 Chanda B, Potnis G, Jana P P, et al. A review on nano-/ultrafine advanced eutectic alloys[J]. J. Alloys Compd., 2020, 827: 154226
17 Yan P X, Chang J, Wang W L, et al. Eutectic growth kinetics and microscopic mechanical properties of rapidly solidified CoCrFeNiMo0.8 high entropy alloy[J]. Acta Mater., 2022, 237: 118149
18 Wang X, Zhai W, Li H, et al. Ultrasounds induced eutectic structure transition and associated mechanical property enhancement of FeCoCrNi2.1Al high entropy alloy[J]. Acta Mater., 2023, 252: 118900
19 Lu Y P, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scr. Mater., 2020, 187: 202
20 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 2017, 122: 448
21 Liu W H, He J Y, Huang H L, et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys[J]. Intermetallics, 2015, 60: 1
22 He F, Wang Z J, Cheng P, et al. Designing eutectic high entropy alloys of CoCrFeNiNb x [J]. J. Alloys Compd., 2016, 656: 284
23 Jiang H, Han K M, Gao X X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Mater. Des., 2018, 142: 101
24 Lu Y P, Jiang H, Guo S, et al. A new strategy to design eutectic high-entropy alloys using mixing enthalpy[J]. Intermetallics, 2017, 91: 124
25 Chanda B, Das J. An assessment on the stability of the eutectic phases in high entropy alloys[J]. J. Alloys Compd., 2019, 798: 167
26 Jin X, Zhou Y, Zhang L, et al. A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration[J]. Mater. Des., 2018, 143: 49
27 Wu Q F, Wang Z J, Hu X B, et al. Uncovering the eutectics design by machine learning in the Al-Co-Cr-Fe-Ni high entropy system[J]. Acta Mater., 2020, 182: 278
28 Jiang H, Li L, Ni Z L, et al. Effect of Nb on microstructure and properties of AlCoCrFeNi2.1 high entropy alloy[J]. Mater. Chem. Phys., 2022, 290: 126631
29 Dong Y, Lu Y P. Effects of tungsten addition on the microstructure and mechanical properties of near-eutectic AlCoCrFeNi2 high-entropy alloy[J]. J. Mater. Eng. Perform., 2018, 27: 109
30 Wang J B, Wang Z J, Shi X B, et al. Alloying behavior of W and Mo in the as-cast dual-phase FeNiCrAl multi-component alloys[J]. J. Alloys Compd., 2023, 951: 169951
31 Chen X H, Xie W Y, Zhu J, et al. Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Intermetallics, 2021, 128: 107024
32 Chen Z H, Wang J B, Jia Y H, et al. Significantly improving the high-temperature tensile properties of Al17Cr10Fe36Ni36Mo1 alloys by microalloying Hf[J]. Materials, 2023, 16: 6836
33 Jia Y H, Wang Z J, Wu Q F, et al. Boron microalloying for high-temperature eutectic high-entropy alloys[J]. Acta Mater., 2024, 262: 119427
34 Lu Y P, Gao X X, Dong Y, et al. Preparing bulk ultrafine-microstructure high-entropy via alloys direct solidification[J]. Nanoscale, 2018, 10: 1912
35 Huo W Y, Zhou H, Fang F, et al. Microstructure and properties of novel CoCrFeNiTa x eutectic high-entropy alloys[J]. J. Alloys Compd., 2018, 735: 897
36 Ye X C, Lei H F, Liu X W, et al. Design of synergistic alloying CoCrFeNi eutectic high entropy alloy based on infinite solid solution[J]. Mater. Lett., 2023, 343: 134395
37 Liu X, Yang Z S, Cui D C, et al. Enhancing the yield strength of casting eutectic high-entropy alloys via coherent precipitates[J]. Metall. Mater. Trans., 2023, 54A: 4620
38 Jiang H, Jiang L, Qiao D X, et al. Effect of niobium on microstructure and properties of the CoCrFeNbNi x high entropy alloys[J]. J. Mater. Sci. Technol., 2017, 33: 712
doi: 10.1016/j.jmst.2016.09.016
39 Jin X, Liang Y X, Bi J, et al. Enhanced strength and ductility of Al0.9CoCrNi2.1 eutectic high entropy alloy by thermomechanical processing[J]. Materialia, 2020, 10: 100639
40 Lu Y P, Gao X Z, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Mater., 2017, 124: 143
41 Dong Y, Yao Z Q, Huang X, et al. Microstructure and mechanical properties of AlCo x CrFeNi3 - x eutectic high-entropy-alloy system[J]. J. Alloys Compd., 2020, 823: 153886
42 Wu Q F, Wang Z J, Zheng T, et al. A casting eutectic high entropy alloy with superior strength-ductility combination[J]. Mater. Lett., 2019, 253: 268
43 Shukla S, Wang T H, Cotton S, et al. Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy[J]. Scr. Mater., 2018, 156: 105
44 Lu J, Zhang H, Chen Y, et al. Y-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation resistance and structure stability at 1000 oC and 1100 oC[J]. Corros. Sci., 2021, 180: 109191
45 Wang L, Yao C L, Shen J, et al. Microstructures and room temperature tensile properties of as-cast and directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Intermetallics, 2020, 118: 106681
46 Jiang X, Li Y, Shi P J, et al. Synergistic control of microstructures and properties in eutectic high-entropy alloys via directional solidification and strong magnetic field[J]. J. Mater. Res. Technol., 2024, 28: 4440
47 Wischi M, Campo K N, Starck L F, et al. Microstructure and mechanical behavior of the directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. J. Mater. Res. Technol., 2022, 20: 811
48 Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys[J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986 pmid: 34413235
49 Guo Y N, Su H J, Zhou H T, et al. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting[J]. J. Mater. Sci. Technol., 2022, 111: 298
50 Ren J, Zhang Y, Zhao D X, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing[J]. Nature, 2022, 608: 62
51 Zhou K X, Li J J, Wu Q F, et al. Remelting induced fully-equiaxed microstructures with anomalous eutectics in the additive manufactured Ni32Co30Cr10Fe10Al18 eutectic high-entropy alloy[J]. Scr. Mater., 2021, 201: 113952
52 Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae[J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2 pmid: 30700708
53 Wani I S, Bhattacharjee T, Sheikh S, et al. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing[J]. Mater. Sci. Eng., 2016, A675: 99
54 Wu Q F, He F, Li J J, et al. Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile[J]. Nat. Commun., 2022, 13: 4697
doi: 10.1038/s41467-022-32444-4 pmid: 35948571
55 Xiong T, Zheng S J, Pang J Y, et al. High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure[J]. Scr. Mater., 2020, 186: 336
56 Lu Y P, Wu X X, Fu Z H, et al. Ductile and ultrahigh-strength eutectic high-entropy alloys by large-volume 3D printing[J]. J. Mater. Sci. Technol., 2022, 126: 15
doi: 10.1016/j.jmst.2022.04.004
57 Reddy S R, Yoshida S, Sunkari U, et al. Engineering heterogeneous microstructure by severe warm-rolling for enhancing strength-ductility synergy in eutectic high entropy alloys[J]. Mater. Sci. Eng., 2019, A764: 138226
58 Wen X, Cui X F, Jin G, et al. In-situ synthesis of nano-lamellar Ni1.5CrCoFe0.5Mo0.1Nb x eutectic high-entropy alloy coatings by laser cladding:Alloy design and microstructure evolution[J]. Surf. Coat. Technol., 2021, 405: 126728
59 Xiao Y K, Chang X P, Peng X H. Low-density NiAlFeCrMoV eutectic high-entropy alloys with excellent mechanical and wear properties[J]. J. Mater. Res. Technol., 2022, 21: 4908
60 Chen X, Qi J Q, Sui Y W, et al. Effects of aluminum on microstructure and compressive properties of Al-Cr-Fe-Ni eutectic multi-component alloys[J]. Mater. Sci. Eng., 2017, A681: 25
61 Zhang Y L, Li J G, Wang X G, et al. The interaction and migration of deformation twin in an eutectic high-entropy alloy AlCoCrFeNi2.1 [J]. J. Mater. Sci. Technol., 2019, 35: 902
doi: 10.1016/j.jmst.2018.09.067
62 Li Y, Shi P J, Wang M Y, et al. Unveiling microstructural origins of the balanced strength-ductility combination in eutectic high-entropy alloys at cryogenic temperatures[J]. Mater. Res. Lett., 2022, 10: 602
63 Li J S, Zhou J, Liu Y F, et al. Microstructural origins of impact resistance of AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Mater. Sci. Eng., 2024, A890: 145921
64 Bhattacharjee T, Zheng R X, Chong Y, et al. Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Mater. Chem. Phys., 2018, 210: 207
65 Duan X T, Han T Z, Guan X, et al. Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates[J]. J. Mater. Sci. Technol., 2023, 136: 97
66 Dong J X, Wu H X, Chen Y, et al. Study on self-lubricating properties of AlCoCrFeNi2.1 eutectic high entropy alloy with electrochemical boronizing[J]. Surf. Coat. Technol., 2022, 433: 128082
67 Miao J W, Wang M L, Zhang A J, et al. Tribological properties and wear mechanism of AlCr1.3TiNi2 eutectic high-entropy alloy at elevated temperature[J]. Acta Metall. Sin., 2023, 59: 267
苗军伟, 王明亮, 张爱军 等. AlCr1.3TiNi2共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59: 267
doi: 10.11900/0412.1961.2021.00589
68 Miao J W, Yao H W, Wang J, et al. Surface modification for AlCoCrFeNi2.1 eutectic high-entropy alloy via laser remelting technology and subsequent aging heat treatment[J]. J. Alloys Compd., 2022, 894: 162380
69 Peng P, Feng X N, Li S Y, et al. Effect of heat treatment on microstructure and mechanical properties of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy[J]. J. Alloys Compd., 2023, 939: 168843
70 Lu J, Zhang H, Li L, et al. Y-Hf Co-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation and spallation resistance under thermal cycling conditions at 1100 oC and 1200 oC[J]. Corros. Sci., 2021, 187: 109515
71 Huang Y H, Wang J B, Wang Z J, et al. Corrosion behavior of high strength AlCrFeNi multi-principal-component alloy in lead-bismuth alloy[J]. Nucl. Power Eng., 2023, 44(S1): 137
黄赟浩, 王健斌, 王志军 等. 铅铋合金环境中高强AlCrFeNi多主元合金的腐蚀行为[J]. 核动力工程, 2023, 44(S1): 137
72 Han X, Chen Q, Chen Q X, et al. Eutectic dual-phase microstructure modulated porous high-entropy alloys as high-performance bifunctional electrocatalysts for water splitting[J]. J. Mater. Chem., 2022, 10A: 11110
73 Li P, Sun H T, Wang S, et al. Rotary friction welding of AlCoCrFeNi2.1 eutectic high entropy alloy[J]. J. Alloys Compd., 2020, 814: 152322
74 Shen J J, Agrawal P, Rodrigues T A, et al. Gas tungsten arc welding of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Mater. Des., 2022, 223: 111176
75 Li P, Sun H T, Dong H G, et al. Microstructural evolution, bonding mechanism and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy joint fabricated via diffusion bonding[J]. Mater. Sci. Eng., 2021, A814: 141211
[1] LU Jianlin, REN Huayong, XIE An, WANG Jiantong, HE Feng. Rapid Solidification Behavior and Microstructure Regulation of Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 Eutectic High-Entropy Alloy[J]. 金属学报, 2025, 61(1): 191-202.
[2] WANG Yeqing, FU Ke, ZHAO Yongzhu, SU Liji, CHEN Zheng. Non-Equilibrium Solidification Behavior and Microstructure Evolution of Undercooled Fe7(CoNiMn)80B13 Eutectic High-Entropy Alloy[J]. 金属学报, 2025, 61(1): 143-153.
[3] ZHANG Jingwen, YU Liming, LIU Chenxi, DING Ran, LIU Yongchang. Synergistic Strengthening of High-Cr Martensitic Heat-Resistant Steel and Application of Thermo-Mechanical Treatments[J]. 金属学报, 2024, 60(6): 713-730.
[4] ZHANG Yu, WU Pan, JIA Dongsheng, HUANG Linke, JIA Xiaoqing, LIU Feng. TG-AHSS Materials Design Based on Thermodynamic and Generalized Stability[J]. 金属学报, 2024, 60(2): 143-153.
[5] TANG Xu, ZHANG Hao, XUE Peng, WU Lihui, LIU Fengchao, ZHU Zhengwang, NI Dingrui, XIAO Bolv, MA Zongyi. Microstructure and Mechanical Properties of As-Cast and Laser Powder Bed Fused AlCoCrFeNi2.1 Eutectic High-Entropy Alloy[J]. 金属学报, 2024, 60(11): 1461-1470.
[6] XIONG Tianying, WANG Jiqiang. Research Progress of Cold Spray in Institute of Metal Research, Chinese Academy of Sciences[J]. 金属学报, 2023, 59(4): 537-546.
[7] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[9] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[10] HE Xingqun, FU Huadong, ZHANG Hongtao, FANG Jiheng, XIE Ming, XIE Jianxin. Machine Learning Aided Rapid Discovery of High Perfor-mance Silver Alloy Electrical Contact Materials[J]. 金属学报, 2022, 58(6): 816-826.
[11] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[12] WANG Donghong, SUN Feng, SHU Da, CHEN Jingyang, XIAO Chengbo, SUN Baode. Data-Driven Design of Cast Nickel-Based Superalloy and Precision Forming of Complex Castings[J]. 金属学报, 2022, 58(1): 89-102.
[13] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[14] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[15] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
No Suggested Reading articles found!