|
|
Revisiting the Development of Eutectic High-Entropy Alloys over the Past Decade (2014-2024): Design, Manufacturing, and Applications |
WANG Zhijun1( ), BAI Xiaoyu1, WANG Jianbin1, JIANG Hui2, JIAO Wenna3, LI Tianxin4, LU Yiping3,5( ) |
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 2 School of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China 3 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 4 College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China 5 Liaoning Engineering Research Center of High-Entropy Alloy Materials, Dalian University of Technology, Dalian 116024, China |
|
Cite this article:
WANG Zhijun, BAI Xiaoyu, WANG Jianbin, JIANG Hui, JIAO Wenna, LI Tianxin, LU Yiping. Revisiting the Development of Eutectic High-Entropy Alloys over the Past Decade (2014-2024): Design, Manufacturing, and Applications. Acta Metall Sin, 2025, 61(1): 1-11.
|
Abstract Eutectic alloys are a class of multi-phase materials named for their formation through eutectic reactions during solidification. They have a long history as the most widely used casting alloys. High-entropy alloys (HEAs), on the other hand, are a novel class of multi-principal element alloys that have rapidly developed since their conceptualization in 2004. Combining the advantages of eutectic alloys and HEAs, eutectic high-entropy alloys (EHEAs) were first proposed in 2014. Over a decade, EHEAs have been systematically investigated by focusing on alloy design, microstructure/performance optimization, large-scale fabrication, and potential applications. Their unique microstructures and excellent comprehensive properties have made EHEAs promising materials across various domains, garnering significant attention in recent years. By revisiting the advances in composition design, manufacturing, and applications of EHEAs over the past decade, this review offered insights into future trends and developments in this rapidly evolving field.
|
Received: 23 July 2024
|
|
Corresponding Authors:
WANG Zhijun, professor, Tel: 13484671484, E-mail: zhjwang@nwpu.edu.cn; LU Yiping, professor, Tel: (0411)84709400, E-mail: luyiping@dlut.edu.cn
|
1 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
|
2 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Mater. Sci. Eng., 2004, A375-377: 213
|
3 |
Miracle D B, Miller J D, Senkov O N, et al. Exploration and development of high entropy alloys for structural applications[J]. Entropy, 2014, 16: 494
|
4 |
Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Mater., 2013, 61: 5743
|
5 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19: 698
|
6 |
Wu S Y, Qiao D X, Zhao H L, et al. A novel NbTaW0.5(Mo2C) x refractory high-entropy alloy with excellent mechanical properties[J]. J. Alloys Compd., 2021, 889: 161800
|
7 |
Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. J. Alloys Compd., 2011, 509: 6043
|
8 |
Lilensten L, Couzinié J P, Perrière L, et al. Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms[J]. Acta Mater., 2018, 142: 131
|
9 |
Oses C, Toher C, Curtarolo S. High-entropy ceramics[J]. Nat. Rev. Mater., 2020, 5: 295
|
10 |
Akrami S, Edalati P, Fuji M, et al. High-entropy ceramics: Review of principles, production and applications[J]. Mater. Sci. Eng., 2021, R146: 100644
|
11 |
Huang Y, Yeh J W, Yang A C M. “High-entropy polymers”: A new route of polymer mixing with suppressed phase separation[J]. Materialia, 2021, 15: 100978
|
12 |
Tiwary C S, Pandey P, Sarkar S, et al. Five decades of research on the development of eutectic as engineering materials[J]. Prog. Mater. Sci., 2022, 123: 100793
|
13 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
14 |
Gao X Z, Lu Y P, Zhang B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Mater., 2017, 141: 59
|
15 |
Chang I, Cai Q. From simple binary to complex multicomponent eutectic alloys[J]. Prog. Mater. Sci., 2022, 123: 100779
|
16 |
Chanda B, Potnis G, Jana P P, et al. A review on nano-/ultrafine advanced eutectic alloys[J]. J. Alloys Compd., 2020, 827: 154226
|
17 |
Yan P X, Chang J, Wang W L, et al. Eutectic growth kinetics and microscopic mechanical properties of rapidly solidified CoCrFeNiMo0.8 high entropy alloy[J]. Acta Mater., 2022, 237: 118149
|
18 |
Wang X, Zhai W, Li H, et al. Ultrasounds induced eutectic structure transition and associated mechanical property enhancement of FeCoCrNi2.1Al high entropy alloy[J]. Acta Mater., 2023, 252: 118900
|
19 |
Lu Y P, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scr. Mater., 2020, 187: 202
|
20 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 2017, 122: 448
|
21 |
Liu W H, He J Y, Huang H L, et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys[J]. Intermetallics, 2015, 60: 1
|
22 |
He F, Wang Z J, Cheng P, et al. Designing eutectic high entropy alloys of CoCrFeNiNb x [J]. J. Alloys Compd., 2016, 656: 284
|
23 |
Jiang H, Han K M, Gao X X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Mater. Des., 2018, 142: 101
|
24 |
Lu Y P, Jiang H, Guo S, et al. A new strategy to design eutectic high-entropy alloys using mixing enthalpy[J]. Intermetallics, 2017, 91: 124
|
25 |
Chanda B, Das J. An assessment on the stability of the eutectic phases in high entropy alloys[J]. J. Alloys Compd., 2019, 798: 167
|
26 |
Jin X, Zhou Y, Zhang L, et al. A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration[J]. Mater. Des., 2018, 143: 49
|
27 |
Wu Q F, Wang Z J, Hu X B, et al. Uncovering the eutectics design by machine learning in the Al-Co-Cr-Fe-Ni high entropy system[J]. Acta Mater., 2020, 182: 278
|
28 |
Jiang H, Li L, Ni Z L, et al. Effect of Nb on microstructure and properties of AlCoCrFeNi2.1 high entropy alloy[J]. Mater. Chem. Phys., 2022, 290: 126631
|
29 |
Dong Y, Lu Y P. Effects of tungsten addition on the microstructure and mechanical properties of near-eutectic AlCoCrFeNi2 high-entropy alloy[J]. J. Mater. Eng. Perform., 2018, 27: 109
|
30 |
Wang J B, Wang Z J, Shi X B, et al. Alloying behavior of W and Mo in the as-cast dual-phase FeNiCrAl multi-component alloys[J]. J. Alloys Compd., 2023, 951: 169951
|
31 |
Chen X H, Xie W Y, Zhu J, et al. Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Intermetallics, 2021, 128: 107024
|
32 |
Chen Z H, Wang J B, Jia Y H, et al. Significantly improving the high-temperature tensile properties of Al17Cr10Fe36Ni36Mo1 alloys by microalloying Hf[J]. Materials, 2023, 16: 6836
|
33 |
Jia Y H, Wang Z J, Wu Q F, et al. Boron microalloying for high-temperature eutectic high-entropy alloys[J]. Acta Mater., 2024, 262: 119427
|
34 |
Lu Y P, Gao X X, Dong Y, et al. Preparing bulk ultrafine-microstructure high-entropy via alloys direct solidification[J]. Nanoscale, 2018, 10: 1912
|
35 |
Huo W Y, Zhou H, Fang F, et al. Microstructure and properties of novel CoCrFeNiTa x eutectic high-entropy alloys[J]. J. Alloys Compd., 2018, 735: 897
|
36 |
Ye X C, Lei H F, Liu X W, et al. Design of synergistic alloying CoCrFeNi eutectic high entropy alloy based on infinite solid solution[J]. Mater. Lett., 2023, 343: 134395
|
37 |
Liu X, Yang Z S, Cui D C, et al. Enhancing the yield strength of casting eutectic high-entropy alloys via coherent precipitates[J]. Metall. Mater. Trans., 2023, 54A: 4620
|
38 |
Jiang H, Jiang L, Qiao D X, et al. Effect of niobium on microstructure and properties of the CoCrFeNbNi x high entropy alloys[J]. J. Mater. Sci. Technol., 2017, 33: 712
doi: 10.1016/j.jmst.2016.09.016
|
39 |
Jin X, Liang Y X, Bi J, et al. Enhanced strength and ductility of Al0.9CoCrNi2.1 eutectic high entropy alloy by thermomechanical processing[J]. Materialia, 2020, 10: 100639
|
40 |
Lu Y P, Gao X Z, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Mater., 2017, 124: 143
|
41 |
Dong Y, Yao Z Q, Huang X, et al. Microstructure and mechanical properties of AlCo x CrFeNi3 - x eutectic high-entropy-alloy system[J]. J. Alloys Compd., 2020, 823: 153886
|
42 |
Wu Q F, Wang Z J, Zheng T, et al. A casting eutectic high entropy alloy with superior strength-ductility combination[J]. Mater. Lett., 2019, 253: 268
|
43 |
Shukla S, Wang T H, Cotton S, et al. Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy[J]. Scr. Mater., 2018, 156: 105
|
44 |
Lu J, Zhang H, Chen Y, et al. Y-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation resistance and structure stability at 1000 oC and 1100 oC[J]. Corros. Sci., 2021, 180: 109191
|
45 |
Wang L, Yao C L, Shen J, et al. Microstructures and room temperature tensile properties of as-cast and directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Intermetallics, 2020, 118: 106681
|
46 |
Jiang X, Li Y, Shi P J, et al. Synergistic control of microstructures and properties in eutectic high-entropy alloys via directional solidification and strong magnetic field[J]. J. Mater. Res. Technol., 2024, 28: 4440
|
47 |
Wischi M, Campo K N, Starck L F, et al. Microstructure and mechanical behavior of the directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. J. Mater. Res. Technol., 2022, 20: 811
|
48 |
Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys[J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986
pmid: 34413235
|
49 |
Guo Y N, Su H J, Zhou H T, et al. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting[J]. J. Mater. Sci. Technol., 2022, 111: 298
|
50 |
Ren J, Zhang Y, Zhao D X, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing[J]. Nature, 2022, 608: 62
|
51 |
Zhou K X, Li J J, Wu Q F, et al. Remelting induced fully-equiaxed microstructures with anomalous eutectics in the additive manufactured Ni32Co30Cr10Fe10Al18 eutectic high-entropy alloy[J]. Scr. Mater., 2021, 201: 113952
|
52 |
Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae[J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2
pmid: 30700708
|
53 |
Wani I S, Bhattacharjee T, Sheikh S, et al. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing[J]. Mater. Sci. Eng., 2016, A675: 99
|
54 |
Wu Q F, He F, Li J J, et al. Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile[J]. Nat. Commun., 2022, 13: 4697
doi: 10.1038/s41467-022-32444-4
pmid: 35948571
|
55 |
Xiong T, Zheng S J, Pang J Y, et al. High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure[J]. Scr. Mater., 2020, 186: 336
|
56 |
Lu Y P, Wu X X, Fu Z H, et al. Ductile and ultrahigh-strength eutectic high-entropy alloys by large-volume 3D printing[J]. J. Mater. Sci. Technol., 2022, 126: 15
doi: 10.1016/j.jmst.2022.04.004
|
57 |
Reddy S R, Yoshida S, Sunkari U, et al. Engineering heterogeneous microstructure by severe warm-rolling for enhancing strength-ductility synergy in eutectic high entropy alloys[J]. Mater. Sci. Eng., 2019, A764: 138226
|
58 |
Wen X, Cui X F, Jin G, et al. In-situ synthesis of nano-lamellar Ni1.5CrCoFe0.5Mo0.1Nb x eutectic high-entropy alloy coatings by laser cladding:Alloy design and microstructure evolution[J]. Surf. Coat. Technol., 2021, 405: 126728
|
59 |
Xiao Y K, Chang X P, Peng X H. Low-density NiAlFeCrMoV eutectic high-entropy alloys with excellent mechanical and wear properties[J]. J. Mater. Res. Technol., 2022, 21: 4908
|
60 |
Chen X, Qi J Q, Sui Y W, et al. Effects of aluminum on microstructure and compressive properties of Al-Cr-Fe-Ni eutectic multi-component alloys[J]. Mater. Sci. Eng., 2017, A681: 25
|
61 |
Zhang Y L, Li J G, Wang X G, et al. The interaction and migration of deformation twin in an eutectic high-entropy alloy AlCoCrFeNi2.1 [J]. J. Mater. Sci. Technol., 2019, 35: 902
doi: 10.1016/j.jmst.2018.09.067
|
62 |
Li Y, Shi P J, Wang M Y, et al. Unveiling microstructural origins of the balanced strength-ductility combination in eutectic high-entropy alloys at cryogenic temperatures[J]. Mater. Res. Lett., 2022, 10: 602
|
63 |
Li J S, Zhou J, Liu Y F, et al. Microstructural origins of impact resistance of AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Mater. Sci. Eng., 2024, A890: 145921
|
64 |
Bhattacharjee T, Zheng R X, Chong Y, et al. Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Mater. Chem. Phys., 2018, 210: 207
|
65 |
Duan X T, Han T Z, Guan X, et al. Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates[J]. J. Mater. Sci. Technol., 2023, 136: 97
|
66 |
Dong J X, Wu H X, Chen Y, et al. Study on self-lubricating properties of AlCoCrFeNi2.1 eutectic high entropy alloy with electrochemical boronizing[J]. Surf. Coat. Technol., 2022, 433: 128082
|
67 |
Miao J W, Wang M L, Zhang A J, et al. Tribological properties and wear mechanism of AlCr1.3TiNi2 eutectic high-entropy alloy at elevated temperature[J]. Acta Metall. Sin., 2023, 59: 267
|
|
苗军伟, 王明亮, 张爱军 等. AlCr1.3TiNi2共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59: 267
doi: 10.11900/0412.1961.2021.00589
|
68 |
Miao J W, Yao H W, Wang J, et al. Surface modification for AlCoCrFeNi2.1 eutectic high-entropy alloy via laser remelting technology and subsequent aging heat treatment[J]. J. Alloys Compd., 2022, 894: 162380
|
69 |
Peng P, Feng X N, Li S Y, et al. Effect of heat treatment on microstructure and mechanical properties of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy[J]. J. Alloys Compd., 2023, 939: 168843
|
70 |
Lu J, Zhang H, Li L, et al. Y-Hf Co-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation and spallation resistance under thermal cycling conditions at 1100 oC and 1200 oC[J]. Corros. Sci., 2021, 187: 109515
|
71 |
Huang Y H, Wang J B, Wang Z J, et al. Corrosion behavior of high strength AlCrFeNi multi-principal-component alloy in lead-bismuth alloy[J]. Nucl. Power Eng., 2023, 44(S1): 137
|
|
黄赟浩, 王健斌, 王志军 等. 铅铋合金环境中高强AlCrFeNi多主元合金的腐蚀行为[J]. 核动力工程, 2023, 44(S1): 137
|
72 |
Han X, Chen Q, Chen Q X, et al. Eutectic dual-phase microstructure modulated porous high-entropy alloys as high-performance bifunctional electrocatalysts for water splitting[J]. J. Mater. Chem., 2022, 10A: 11110
|
73 |
Li P, Sun H T, Wang S, et al. Rotary friction welding of AlCoCrFeNi2.1 eutectic high entropy alloy[J]. J. Alloys Compd., 2020, 814: 152322
|
74 |
Shen J J, Agrawal P, Rodrigues T A, et al. Gas tungsten arc welding of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Mater. Des., 2022, 223: 111176
|
75 |
Li P, Sun H T, Dong H G, et al. Microstructural evolution, bonding mechanism and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy joint fabricated via diffusion bonding[J]. Mater. Sci. Eng., 2021, A814: 141211
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|