Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (1): 12-28    DOI: 10.11900/0412.1961.2024.00265
Overview Current Issue | Archive | Adv Search |
Progress in Multiscale Simulation of Solidification Behavior in Vacuum Arc Remelted Ingot
LI Junjie1(), LI Panyue1, HUANG Liqing1,2, GUO Jie1, WU Jingyang1, FAN Kai2, WANG Jincheng1
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 Hunan Xiangtou Goldsky Titanium Industry Technology Co. Ltd., Changde 415001, China
Cite this article: 

LI Junjie, LI Panyue, HUANG Liqing, GUO Jie, WU Jingyang, FAN Kai, WANG Jincheng. Progress in Multiscale Simulation of Solidification Behavior in Vacuum Arc Remelted Ingot. Acta Metall Sin, 2025, 61(1): 12-28.

Download:  HTML  PDF(3248KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Vacuum arc remelting (VAR) is the principal remelting process for producing high-quality Ti-based alloy and Ni-based superalloy ingots with high density, fine chemical homogeneity, and minimal defects. Numerical modeling plays a crucial role in understanding the mechanisms and dynamics of various phenomena occurring at different scales during the VAR process. It also aids in optimizing operational parameters. In this paper, the development of multiscale simulations for VAR ingot solidification over the last two decades is introduced. The following four aspects are addressed: numerical models at various scales, macroscopic transport phenomena, microstructure and defect evolution, and the effects of process control parameters on the VAR ingot quality. Furthermore, the current limitations in this field and proposed future development directions are discussed.

Key words:  vacuum arc remelting      solidification      numerical simulation      macrosegregation      microstructure     
Received:  31 July 2024     
ZTFLH:  TG244  
Fund: Research Fund of State Key Laboratory of Solidification Processing in NWPU(2020-TS-06)
Corresponding Authors:  LI Junjie, professor, Tel: (029)88492374, E-mail: lijunjie@nwpu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00265     OR     https://www.ams.org.cn/EN/Y2025/V61/I1/12

Fig.1  Interacting physical phenomena and correlation during the solidification of vacuum arc remelting (VAR) molten pool (Dash line indicates the weak correlation)
Fig.2  Typical temperature distributions in the four stages of VAR process[8] (Inset shows the locally enlarged view)
Fig.3  Typical isothermal lines in the molten pool with buoyancy driven flow (a) or with Lorentz force driven flow (b) (T—temperature, v—liquid velocity)
Fig.4  Flow patterns in VAR molten pool driven by buoyancy (a), self-induced Lorentz force (b), stirring Lorentz force (c) (u—poloidal velocity, uθ —azimuthal velocity)
Fig.5  Variations of molten pool characters with remelting current determined by the competition between buoyancy and self-induced Lorentz force[58]
(a) maximum velocity in molten pool (b) pool depth
Fig.6  Generation mechanism of macrosegregation in VAR ingot
Fig.7  Macrosegregation in VAR ingots under various flow patterns
(a, b) simulation results of Ti-5.1%V in the condition of buoyancy driven flow (a) and self-induced Lorentz driven flow (b)[58] (c—actual composition, c¯—norminal composition) (c, d) schematic representations of the simulated results for Ti-10-2-3 alloy in the condition of buoyancy driven flow (c) and self-induced Lorentz driven flow (d)[57] (1: Fe enriched, 2: close to average alloy composition, 3: Fe depleted)
Fig.8  Comparisons of the macrosegregation in ingots with various electrode placements for three successive VAR[11]
(a-i) concentration distributions of all triple remelting ingots for VAR1-A (a), VAR2-A (b), VAR2-D (c), VAR2-R (d), VAR3-A (e), VAR3-D-D (f), VAR3-D-R (g), VAR3-R-D (h), and VAR3-R-R (i) (CV—mass fraction of vanadium element)
(j) global macrosegregation index (GMI) of each remelting ingot
Fig.9  Comparisons of cellular automation (CA) simulated and experimental results of solidification grain structure in titanium alloy ingot[29] (a), Ni-based superalloy ingot[53] (b), and bearing steel ingot[32] (h—depth of molten pool, R—radius of melting pool. The A1 and A2 regions are the columnar crystal regions corresponding to the simulation results and the experimental results, respectively. The B1 and B2 regions are the central equiaxed crystal regions corresponding to the simulation results and the experimental results, respectively, and the remaining regions are the surface fine grain regions corresponding to the two results) (c)
Fig.10  Multi-scale simulations on the formation mechanism of β fleck in titanium alloys[28]
(a) macroscale temperature field
(b) grain structure
(c) microsegregation within dendritic structure at nine positions of the ingot labeled in Figs.10a and b (G—temperature gradient, T˙cooling rate, CCr—mass fraction of Cr)
(d) variation ranges of β transition temperature (Tβ) at the nine positions
1 Bennon W D, Incropera F P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation[J]. Int. J. Heat Mass Transfer, 1987, 30: 2161
2 Pericleous K, Djambazov G, Ward M, et al. A multiscale 3D model of the vacuum arc remelting process[J]. Metall. Mater. Trans., 2013, 44A: 5365
3 Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Comput. Methods Appl. Mech. Eng., 1974, 3: 269
4 Reiter G, Maronnier V, Sommitsch C, et al. Numerical simulation of the VAR process with calcosoft-2D and its validation[A]. International Symposium on Liquid Metal Processing and Casting[C]. Nancy, France: LMPC, 2003: 77
5 Guan J, Miao Y Y, Chen Z Z, et al. Modeling of macrosegregation formation and the effect of enhanced cooling during vacuum arc remelting solidification of NbTi alloy ingot[J]. Metall. Mater. Trans., 2022, 53B: 4048
6 Cui J J, Li B K, Liu Z Q, et al. Comparative investigation on ingot evolution and product quality under different arc distributions during vacuum arc remelting process[J]. J. Mater. Res. Technol., 2022, 18: 3991
7 Cui J J, Li B K, Liu Z Q, et al. Numerical investigation on the effect of axial magnetic field on metallurgical quality of ingots during vacuum arc remelting process[J]. J. Mater. Res. Technol., 2022, 20: 1912
8 Yang S L, Tian Q, Yu P, et al. Numerical simulation and experimental study of vacuum arc remelting (VAR) process for large-size GH4742 superalloy[J]. J. Mater. Res. Technol., 2023, 24: 2828
9 Xu X, Zhang W, Lee P D. Tree-ring formation during vacuum arc remelting of Inconel 718: part II. Mathematical modeling[J]. Metall. Mater. Trans., 2002, 33A: 1805
10 Zagrebelnyy D, Krane M J M. Segregation development in multiple melt vacuum arc remelting[J]. Metall. Mater. Trans., 2009, 40B: 281
11 Guo J, Huang L Q, Wu J Y, et al. Evolution of macrosegregation during three-stage vacuum arc remelting of titanium alloys[J]. Acta Metall. Sin., 2024, 59: 1531
郭 杰, 黄立清, 吴京洋 等. 钛合金三次真空自耗电弧熔炼过程中的宏观偏析传递行为[J]. 金属学报, 2024, 59: 1531
12 Guan J, Liu D R, Cao Y F, et al. Macro and micro segregations and prediction of carbide equivalent size in vacuum arc remelting of M50 steel via simulations and experiments[J]. Metall. Mater. Trans., 2024, 55A: 1081
13 Revil-Baudard M, Jardy A, Combeau H, et al. Solidification of a vacuum arc-remelted zirconium ingot[J]. Metall. Mater. Trans., 2014, 45B: 51
14 Mramor K, Quatravaux T, Combeau H, et al. On the prediction of macrosegregation in vacuum arc remelted ingots[J]. Metall. Mater. Trans., 2022, 53B: 2953
15 Han J J, Ren N, Zhou Y, et al. Melt convection and macrosegregation in the vacuum arc remelted Ti2AlNb ingot: Numerical methods and experimental verification[J]. J. Mater. Process. Technol., 2022, 308: 117729
16 Chapelle P, Jardy A, Bellot J P, et al. Effect of electromagnetic stirring on melt pool free surface dynamics during vacuum arc remelting[J]. J. Mater. Sci., 2008, 43: 5734
17 Karimi-Sibaki E, Kharicha A, Wu M, et al. A parametric study of the vacuum arc remelting (VAR) process: Effects of arc radius, side-arcing, and gas cooling[J]. Metall. Mater. Trans., 2020, 51B: 222
18 Karimi-Sibaki E, Kharicha A, Abdi M, et al. A Numerical study on the influence of an axial magnetic field (AMF) on vacuum arc remelting (VAR) process[J]. Metall. Mater. Trans., 2021, 52B: 3354
19 Karimi-Sibaki E, Kharicha A, Vakhrushev A, et al. Numerical modeling and experimental validation of the effect of arc distribution on the as-solidified Ti64 ingot in vacuum arc remelting (VAR) process[J]. J. Mater. Res. Technol., 2022, 19: 183
20 Gandin C A, Rappaz M. A 3D cellular automaton algorithm for the prediction of dendritic grain growth[J]. Acta Mater., 1997, 45: 2187
21 Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification[J]. Acta Metall., 1986, 34: 823
22 Nastac L. Multiscale modelling approach for predicting solidification structure evolution in vacuum arc remelted superalloy ingots[J]. Mater. Sci. Technol., 2012, 28: 1006
23 Nastac L. A multiscale transient modeling approach for predicting the solidification structure in VAR-processed alloy 718 ingots[J]. Metall. Mater. Trans., 2014, 45B: 44
24 Wang W, Lee P D, McLean M. A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection[J]. Acta Mater., 2003, 51: 2971
25 Zhao Y H, Xing H, Zhang L J, et al. Development of phase-field modeling in materials science in China: A review[J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 1749
26 Tourret D, Liu H, LLorca J. Phase-field modeling of microstructure evolution: Recent applications, perspectives and challenges[J]. Prog. Mater. Sci., 2022, 123: 100810
27 Yuan L, Djambazov G, Lee P D, et al. Multiscale modeling of the vacuum arc remelting process for the prediction on microstructure formation[J]. Int. J. Mod. Phys., 2009, 23B: 1584
28 Guo J. Multi-scale simulation of segregation and solidfication structure during the vacuum arc remelting of TC17 alloy[D]. Xi'an: Northwestern Polytechnical University, 2023
郭 杰. TC17合金VAR铸锭宏/微观偏析及组织演化模拟[D]. 西安: 西北工业大学, 2023
29 Cui J J, Li B K, Liu Z Q, et al. Numerical investigation of grain structure under the rotating arc based on cellular automata-finite element method during vacuum arc remelting process[J]. Metall. Mater. Trans., 2023, 54B: 661
30 Sun X Y, Lv G L, Li X M, et al. Numerical simulation of VAR for large-scale TC4 alloy during the solidification process[J]. Int. J. Cast Met. Res., 2024, 37: 1
31 Wang Y D, Zhang L F, Zhang J, et al. Simulation of solidification structure during vacuum arc remelting using cellular automaton-finite element method[J]. Steel Res. Int., 2022, 93: 2100408
32 Zhu M M, Lv G L, Li X M, et al. Numerical simulation of cellular automaton in vacuum arc remelting during the solidification process[J]. Mater. Res. Express, 2023, 10: 046518
33 Kermanpur A, Lee P D, McLean M, et al. Integrated modeling for the manufacture of aerospace discs: Grain structure evolution[J]. JOM, 2004, 56: 72
34 Bellet M, Combeau H, Fautrelle Y, et al. Call for contributions to a numerical benchmark problem for 2D columnar solidification of binary alloys[J]. Int. J. Therm. Sci., 2009, 48: 2013
35 Ren N, Li J, Zhang R Y, et al. Solute trapping and non-equilibrium microstructure during rapid solidification of additive manufacturing[J]. Nat. Commun., 2023, 14: 7990
doi: 10.1038/s41467-023-43563-x pmid: 38042908
36 Lopez L F, Beaman J J, Williamson R L. A reduced-order model for dynamic vacuum arc remelting pool depth estimation and control[A]. ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control[C]. Arlington: ASME, 2011: 517
37 Kondrashov E N, Musatov M I, Maksimov A Y, et al. Calculation of the molten pool depth in vacuum arc remelting of alloy Vt3-1[J]. J. Eng. Thermophys., 2007, 16: 19
38 Leder M O, Gorina A V, Kornilova M A, et al. Determination of the thermophysical properties of titanium alloys from liquid bath profiles[J]. Russ. Metall., 2015, 2015: 964
39 Kondrashov E N, Leder M O, Maksimov A Y. Simulation of the VT3-1 alloy ingot solidification during VAR[J]. Russ. Metall., 2018, 2018: 1114
40 Quatravaux T, Ryberon S, Hans S, et al. Transient VAR ingot growth modelling: Application to specialty steels[J]. J. Mater. Sci., 2004, 39: 7183
41 Delzant P O, Baqué B, Chapelle P, et al. On the modeling of thermal radiation at the top surface of a vacuum arc remelting ingot[J]. Metall. Mater. Trans., 2018, 49B: 958
42 Zhao X H, Li J S, Yang Z J, et al. Numerical simulation of temperature field in vacuum arc remelting Ti alloy[J]. Spec. Cast. Nonferrous Alloys, 2010, 30: 1001
赵小花, 李金山, 杨治军 等. 钛合金真空自耗电弧熔炼过程中温度场的数值模拟[J]. 特种铸造及有色合金, 2010, 30: 1001
43 Yang Z J, Zhao X H, Kou H C, et al. Numerical simulation of temperature distribution and heat transfer during solidification of titanium alloy ingots in vacuum arc remelting process[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1957
44 Wang J L, Hao M Y, Tan Q M, et al. Numerical simulation and crack prediction of TD3 Alloy during vacuum arc remelting[J]. Spec. Cast. Nonferrous Alloys, 2024, 44: 916
王建磊, 郝孟一, 谭启明 等. TD3真空自耗熔炼过程数值模拟及裂纹预测[J]. 特种铸造及有色合金, 2024, 44: 916
45 Huang Y S, Yang M S, Li J S, et al. Vacuum arc remelting process of high-alloy bearing steel and multi-scale control of solidification structure[J]. Mater. Sci. Forum, 2015, 817: 826
46 Pan T, Zhu H C, Jiang Z H, et al. Mechanism of local solidification time variations with melt rate during vacuum arc remelting process of 8Cr4Mo4V high-strength steel[J]. J. Iron Steel Res. Int., 2024, 31: 377
47 Wang Y Y, Liu X H, Xia Y, et al. Effect of cooling conditions on the temperature field and macrosegregation of Cr element of TC6 alloy ingot[J]. Rare Met. Mater. Eng., 2023, 52: 4245
王阳阳, 刘向宏, 夏 勇 等. 冷却条件对TC6合金温度场和Cr偏析的影响[J]. 稀有金属材料与工程, 2023, 52: 4245
48 Spitans S, Franz H, Scholz H, et al. Numerical simulation of the ingot growth during the vacuum arc remelting (VAR) process[J]. Magnetohydrodynamics, 2017, 53: 557
49 Davidson P A, He X, Lowe A J. Flow transitions in vacuum arc remelting[J]. Mater. Sci. Technol., 2000, 16: 699
50 Pickering E J. Macrosegregation in steel ingots: The applicability of modelling and characterisation techniques[J]. ISIJ Int., 2013, 53: 935
51 Yu K O, Domingue J A, Maurer G E, et al. Macrosegregation in ESR and VAR processes[J]. JOM, 1986, 38: 46
52 Kondrashov E N, Tarenkova N Y, Maksimov A Y, et al. Study of the crystallization morphology of VT3-1 alloy during VAR[J]. J. Eng. Thermophys., 2009, 18: 80
53 Kermanpur A, Evans D G, Siddall R J, et al. Effect of process parameters on grain structure formation during VAR of Inconel alloy 718[J]. J. Mater. Sci., 2004, 39: 7175
54 Davidson P A, Kinnear D, Lingwood R J, et al. The role of Ekman pumping and the dominance of swirl in confined flows driven by Lorentz forces[J]. Eur. J. Mech., 1999, 18B: 693
55 Fan K, Wu L C, Li J J, et al. Numerical simulation of macrosegregation caused by buoyancy driven flow during VAR process for titanium alloys[J]. Rare Met. Mater. Eng., 2020, 49: 871
樊 凯, 吴林财, 李俊杰 等. 钛合金VAR过程中自然对流下的宏观偏析行为模拟[J]. 稀有金属材料与工程, 2020, 49: 871
56 Zhao X H, Li J S, Yang Z J, et al. Numerical simulation of fluid flow caused by buoyancy forces during vacuum arc remelting process[J]. J. Shanghai Jiaotong Univ. (Sci.), 2011, 16: 272
57 Zagrebelnyy D V. Modeling macrosegregation during the vacuum arc remelting of Ti-10V-2Fe-3Al alloy[D]. West Lafayette: Purdue University, 2007
58 Wu J Y. Thesis submitted in partial fulfillment of the requirements for the degree of master of science[D]. Xi'an: Northwestern Polytechnical University, 2021
吴京洋. 钛合金VAR过程中熔体流动及宏观偏析行为的数值模拟[D]. 西安: 西北工业大学, 2021
59 Huang L Q, Wu J Y, Guo J, et al. Effect of self-induced magnetic field on liquid flow and segregation during VAR process for titanium alloys[J]. Iron Steel Vanadium Titanium, 2023, 44(4): 55
黄立清, 吴京洋, 郭 杰 等. 钛合金VAR过程中自感电磁场对流场与偏析行为的影响[J]. 钢铁钒钛, 2023, 44(4): 55
60 Kou H, Zhang Y J, Yang Z J, et al. Liquid metal flow behavior during vacuum consumable arc remelting process for titanium[J]. Int. J. Eng. Technol., 2014, 12: 50
61 Huang L Q, Fan K, Guo J, et al. Simulation study on the effect of VAR magnetic stirring process on the melt flow[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 65
黄立清, 樊 凯, 郭 杰 等. VAR电磁搅拌工艺对熔体流动影响的模拟研究[J]. 钢铁钒钛, 2024, 45(1): 65
62 Shevchenko D M, Ward R M. Liquid metal pool behavior during the vacuum arc remelting of Inconel 718[J]. Metall. Mater. Trans., 2009, 40B: 263
63 Delzant P O, Chapelle P, Jardy A, et al. Investigation of arc dynamics during vacuum arc remelting of a Ti64 alloy using a photodiode based instrumentation[J]. J. Mater. Process. Technol., 2019, 266: 10
64 Woodside C R, King P E, Nordlund C. Arc distribution during the vacuum arc remelting of Ti-6Al-4V[J]. Metall. Mater. Trans., 2013, 44B: 154
65 Delzant P O, Chapelle P, Jardy A, et al. Impact of a transient and asymmetrical distribution of the electric arc on the solidification conditions of the ingot in the VAR process[J]. Metals, 2022, 12: 500
66 Dobatkin V I, Anoshkin N F. Comparison of macrosegregation in titanium and aluminium alloy ingots[J]. Mater. Sci. Eng., 1999, A263: 224
67 Zhao Y Q, Liu J L, Zhou L. Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys[J]. Rare Met. Mater. Eng., 2005, 34: 531
赵永庆, 刘军林, 周 廉. 典型β型钛合金元素Cu, Fe和Cr的偏析规律[J]. 稀有金属材料与工程, 2005, 34: 531
68 Dai Y, Cao J H, Qin Y M, et al. Numerical simulation of melt convection and macrosegregation of Ti60 alloy ingot during the vacuum arc remelting[J]. Rare Met. Mater. Eng., 2024, 53: 701
戴 毅, 曹江海, 秦羽满 等. Ti60合金VAR熔炼过程熔体流动与宏观偏析的数值模拟研究[J]. 稀有金属材料与工程, 2024, 53: 701
69 Zhao X H, Wang J C, Liu P, et al. Effect of electrode block’s mixing uniformity on titanium alloy ingot’s composition[J]. Titanium Ind. Prog., 2021, 38(4): 1
赵小花, 王锦程, 刘 鹏 等. 钛合金电极块混料均匀性对铸锭成分的影响[J]. 钛工业进展, 2021, 38(4): 1
70 Jiang D B, Yang F Z, Zhang J, et al. Effect of feeding parameters on ingot segregation and shrinkage pore in vacuum arc remelting[J]. J. Iron Steel Res. Int., 2023, 30: 1268
71 Jing Z Q, Liu R, Geng N T, et al. Simulation of solidification structure in the vacuum arc remelting process of titanium alloy TC4 based on 3D CAFE method[J]. Processes, 2024, 12: 802
72 Atwood R C, Lee P D, Minisandram R S, et al. Multiscale modelling of microstructure formation during vacuum arc remelting of titanium 6-4[J]. J. Mater. Sci., 2004, 39: 7193
73 Li X, Zhang T, Jiang H, et al. Predicting the three-dimensional grain structure of superalloys during vacuum arc remelting process[J]. J. Mater. Res. Technol., 2023, 25: 5938
74 Kou H C, Zhang Y J, Li P F, et al. Numerical simulation of titanium alloy ingot solidification structure during VAR process based on three-dimensional CAFE method[J]. Rare Met. Mater. Eng., 2014, 43: 1537
75 Zhao X H, Wang J C, Wang K X, et al. Numerical simulation and experimental validation on the effect of stirring coils' parameters on TC17 ingot during vacuum arc remelting process[J]. Rare Met. Mater. Eng., 2023, 52: 2676
76 Wang X H, Ward R M, Jacobs M H, et al. Effect of variation in process parameters on the formation of freckle in Inconel 718 by vacuum arc remelting[J]. Metall. Mater. Trans., 2008, 39A: 2981
77 Beckermann C, Gu J P, Boettinger W J. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings[J]. Metall. Mater. Trans., 2000, 31A: 2545
78 Yang W H, Chang K M, Chen W, et al. Freckle criteria for the upward directional solidification of alloys[J]. Metall. Mater. Trans., 2001, 32A: 397
79 Jardy A, Ablitzer D. Mathematical modelling of superalloy remelting operations[J]. Mater. Sci. Technol., 2009, 25: 163
80 Patel A D, Minisandram R S, Evans D G. Modeling of vacuum arc remelting of alloy 718 ingots[A]. Superalloys 2004[C]. Charlotte, NC: TMS, 2004: 917
81 Jackman L A, Maurer G E, Widge S. New knowledge about ‘white spots’ in superalloys[J]. Adv. Mater. Processes, 1993, 143: 18
82 Zhang W, Lee P D, McLean M. Numerical simulation of dendrite white spot formation during vacuum arc remelting of Inconel 718[J]. Metall. Mater. Trans., 2002, 33A: 443
83 Jiang D B, Zhang L F. Operation parameters on white spot formation in vacuum arc remelting[J]. JOM, 2023, 75: 1505
84 Jiang D B, Ren Y, Zhang L F. Numerical simulation of inclusion distribution in vacuum arc remelting ingot[J]. Metall. Mater. Trans., 2023, 54B: 1342
85 Ghazal G, Jardy A, Chapelle P, et al. On the dissolution of nitrided titanium defects during vacuum arc remelting of Ti alloys[J]. Metall. Mater. Trans., 2010, 41B: 646
86 Bellot J P, Ablitzer D, Foster B, et al. Dissolution of hard-alpha inclusions in liquid titanium alloys[J]. Metall. Mater. Trans., 1997, 28B: 1001
87 Li M Y, Yang S F, Liu W, et al. Research process on segregation and control of titanium alloy during vacuum arc remelting[J]. China Metall., 2023, 33(9): 1
李明宇, 杨树峰, 刘 威 等. 真空自耗熔炼钛合金的偏析缺陷及控制研究进展[J]. 中国冶金, 2023, 33(9): 1
88 Shamblen C E. Minimizing beta flecks in the Ti-17 alloy[J]. Metall. Mater. Trans., 1997, 28B: 899
89 Zeng W D, Zhou Y G, Yu H Q. Effect of beta flecks on low-cycle fatigue properties of Ti-10V-2Fe-3Al[J]. J. Mater. Eng. Perform., 2000, 9: 222
90 Kawakami A. Study on segregation behavior of alloying elements in titanium alloys during solidification[D]. Vancouver: University of British Columbia, 2002
91 Mitchell A, Kawakami A, Cockcroft S L. Beta fleck and segregation in titanium alloy ingots[J]. High Temp. Mater. Processes, 2006, 25: 337
92 Yin X C. Study on beta flecks and formation mechanisms in TC17 alloy[D]. Hefei: University of Science and Technology of China, 2020
尹续臣. TC17合金中的β斑及其形成机制研究[D]. 合肥: 中国科学技术大学, 2020
93 Yin X C, Liu J R, Wang Q J, et al. Investigation of beta fleck formation in Ti-17 alloy by directional solidification method[J]. J. Mater. Sci. Technol., 2020, 48: 36
doi: 10.1016/j.jmst.2019.12.018
94 Ji Q T, Yu J, Ning J, et al. Numerical simulation of vacuum arc remelting process of USS122G ingot[J]. Iron Steel, 2022, 57(10): 127
汲庆涛, 于 杰, 宁 静 等. USS122G钢锭真空电弧重熔工艺的数值模拟[J]. 钢铁, 2022, 57(10): 127
doi: 10.13228/j.boyuan.issn0449-749x.20220188
95 Wang Y, Ma D S, Yang M S, et al. Numerical simulation of vacuum consumable arc melting optimization for high alloy stainless bearing steel[J]. China Metall., 2023, 33(9): 35
王 杨, 马党参, 杨卯生 等. 高合金不锈轴承钢真空自耗熔炼数值模拟优化[J]. 中国冶金, 2023, 33(9): 35
96 Wang Y D, Zhang L F, Zhang J, et al. Numerical simulation of macrosegregation in vacuum arc remelting process[J]. J. Iron Steel Res. Int., 2021, 33: 718
王亚栋, 张立峰, 张 健 等. 真空自耗熔炼过程宏观偏析的数值模拟[J]. 钢铁研究学报, 2021, 33: 718
doi: 10.13228/j.boyuan.issn1001-0963.20210110
97 Wen H, Zheng Y B, Chen F, et al. Research on melting technology of TC2 titanium alloy ingot depend on MeltFlow-VAR[J]. World Nonferrous Met., 2022, (14): 12
文 豪, 郑亚波, 陈 峰 等. 基于MeltFlow-VAR的TC2钛合金铸锭熔炼工艺研究[J]. 世界有色金属, 2022, (14): 12
98 Jing Z Q, Sun Y H, Liu R, et al. Effect of vacuum arc remelting process parameters on macrosegregation in TC4 titanium alloy[J]. Rare Met. Mater. Eng., 2023, 52: 815
99 Patel A, Fiore D. On the modeling of vacuum arc remelting process in titanium alloys[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2016, 143: 012017
100 Luo W Z, Zhao X H, Liu P, et al. Computational simulation of factors affecting surface quality of titanium alloy ingot in VAR process[J]. Rare Met. Mater. Eng., 2020, 49: 927
罗文忠, 赵小花, 刘 鹏 等. 采用数值模拟方法分析影响VAR熔炼钛合金铸锭表面质量的因素[J]. 稀有金属材料与工程, 2020, 49: 927
101 Li T, Hua Q, Liu H, et al. Research on the melting process of TC17 titanium alloy ingots based on MeltFlow VAR[J]. Spec. Steel Technol., 2024, 30(2): 12
李 彤, 华 倩, 刘 华 等. 基于MeltFlow-VAR的TC17钛合金铸锭熔炼工艺研究[J]. 特钢技术, 2024, 30(2): 12
102 Ward R M, Jacobs M H. Electrical and magnetic techniques for monitoring arc behaviour during VAR of Inconel1 718: Results from different operating conditions[J]. J. Mater. Sci., 2004, 39: 7135
103 Zhang W B, Sun D K, Chen W, et al. Lattice Boltzmann modeling of convective heat and solute transfer in additive manufacturing of multi-component alloys[J]. Addit. Manuf., 2024, 84: 104089
104 Liu Y L, Sun D K, Zhang Z X, et al. A lattice Boltzmann model for incompressible gas and liquid two-phase flows combined with free-surface method[J]. Phys. Fluids, 2024, 36: 032124
[1] YANG Lin, MA Changsong, LIU Lianjie, LI Jinfu. Solidification of Undercooled (Fe1 -x Co x)79.3B20.7 Alloys[J]. 金属学报, 2025, 61(1): 99-108.
[2] XIA Xingchuan, ZHANG Enkuan, DING Jian, WANG Yujiang, LIU Yongchang. Research Progress on Laser Cladding of Refractory High-Entropy Alloy Coatings[J]. 金属学报, 2025, 61(1): 59-76.
[3] ZHAO Yanan, GUO Qianying, LIU Chenxi, MA Zongqing, LIU Yongchang. Effects of Subsequent Heat Treatment on Microstructure and High-Temperature Mechanical Properties of Laser 3D Printed GH4099 Alloy[J]. 金属学报, 2025, 61(1): 165-176.
[4] ZHU Man, ZHANG Cheng, XU Junfeng, JIAN Zengyun, XI Zengzhe. Microstructure, Mechanical Properties, and High-Temperature Oxidation Behaviors of the CrNbTiVAl x Refractory High-Entropy Alloys[J]. 金属学报, 2025, 61(1): 88-98.
[5] WAN Jie, LI Haotian, LIU Shuji, LU Hongzhou, WANG Lisheng, ZHANG Zhendong, LIU Chunhai, JIA Jianlei, LIU Haifeng, CHEN Yuzeng. Homogenization of Nuclei in Al-Nb-B Inoculant and Its Effect on Microstructure and Mechanical Properties of Cast Al Alloy[J]. 金属学报, 2025, 61(1): 117-128.
[6] HAN Ying, WU Yuhang, ZHAO Chunlu, ZHANG Jingshi, LI Zhenmin, RAN Xu. High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy[J]. 金属学报, 2025, 61(1): 154-164.
[7] LU Jianlin, REN Huayong, XIE An, WANG Jiantong, HE Feng. Rapid Solidification Behavior and Microstructure Regulation of Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 Eutectic High-Entropy Alloy[J]. 金属学报, 2025, 61(1): 191-202.
[8] WANG Yeqing, FU Ke, ZHAO Yongzhu, SU Liji, CHEN Zheng. Non-Equilibrium Solidification Behavior and Microstructure Evolution of Undercooled Fe7(CoNiMn)80B13 Eutectic High-Entropy Alloy[J]. 金属学报, 2025, 61(1): 143-153.
[9] YU Dong, MA Weilong, WANG Yali, WANG Jincheng. Phase Field Modeling of Microstructure Evolution During Solidification and Subsequent Solid-State Phase Transformation of Au-Pt Alloys[J]. 金属学报, 2025, 61(1): 109-116.
[10] WANG Zhijun, BAI Xiaoyu, WANG Jianbin, JIANG Hui, JIAO Wenna, LI Tianxin, LU Yiping. Revisiting the Development of Eutectic High-Entropy Alloys over the Past Decade (2014-2024): Design, Manufacturing, and Applications[J]. 金属学报, 2025, 61(1): 1-11.
[11] CAO Shuting, ZHAO Jian, GONG Tongzhao, ZHANG Shaohua, ZHANG Jian. Effects of Cu Content on the Microstructure and Tensile Property of K4061 Alloy[J]. 金属学报, 2024, 60(9): 1179-1188.
[12] GONG Weijia, LIANG Senmao, ZHANG Jingyi, LI Shilei, SUN Yong, LI Zhongkui, LI Jinshan. Effect of Cooling Rate on Hydride Precipitation in Zirconium Alloys[J]. 金属学报, 2024, 60(9): 1155-1164.
[13] WANG Lin, WEI Chen, WANG Lei, WANG Jun, LI Jinshan. Simulation of Core-Shell Structure Evolution of Cu-Co Immiscible Alloys[J]. 金属学报, 2024, 60(9): 1239-1249.
[14] ZHOU Mu, WANG Qian, WANG Yanxu, ZHAI Zirong, HE Lunhua, LI Bing, MA Yingjie, LEI Jiafeng, YANG Rui. Effect of Prewelding Pretreatment on Welding Residual Stress of Titanium Alloy Thick Plate[J]. 金属学报, 2024, 60(8): 1064-1078.
[15] CHEN Cheng, YANG Guangyu, JIN Menghui, WANG Qiang, TANG Xin, CHENG Huimin, JIE Wanqi. Effect of the Mold Positive and Negative Rotation on the Microstructure and Room-Temperature Mechanical Properties of K4169 Superalloy[J]. 金属学报, 2024, 60(7): 926-936.
No Suggested Reading articles found!