|
|
Progress in Multiscale Simulation of Solidification Behavior in Vacuum Arc Remelted Ingot |
LI Junjie1( ), LI Panyue1, HUANG Liqing1,2, GUO Jie1, WU Jingyang1, FAN Kai2, WANG Jincheng1 |
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 2 Hunan Xiangtou Goldsky Titanium Industry Technology Co. Ltd., Changde 415001, China |
|
Cite this article:
LI Junjie, LI Panyue, HUANG Liqing, GUO Jie, WU Jingyang, FAN Kai, WANG Jincheng. Progress in Multiscale Simulation of Solidification Behavior in Vacuum Arc Remelted Ingot. Acta Metall Sin, 2025, 61(1): 12-28.
|
Abstract Vacuum arc remelting (VAR) is the principal remelting process for producing high-quality Ti-based alloy and Ni-based superalloy ingots with high density, fine chemical homogeneity, and minimal defects. Numerical modeling plays a crucial role in understanding the mechanisms and dynamics of various phenomena occurring at different scales during the VAR process. It also aids in optimizing operational parameters. In this paper, the development of multiscale simulations for VAR ingot solidification over the last two decades is introduced. The following four aspects are addressed: numerical models at various scales, macroscopic transport phenomena, microstructure and defect evolution, and the effects of process control parameters on the VAR ingot quality. Furthermore, the current limitations in this field and proposed future development directions are discussed.
|
Received: 31 July 2024
|
|
Fund: Research Fund of State Key Laboratory of Solidification Processing in NWPU(2020-TS-06) |
Corresponding Authors:
LI Junjie, professor, Tel: (029)88492374, E-mail: lijunjie@nwpu.edu.cn
|
1 |
Bennon W D, Incropera F P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation[J]. Int. J. Heat Mass Transfer, 1987, 30: 2161
|
2 |
Pericleous K, Djambazov G, Ward M, et al. A multiscale 3D model of the vacuum arc remelting process[J]. Metall. Mater. Trans., 2013, 44A: 5365
|
3 |
Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Comput. Methods Appl. Mech. Eng., 1974, 3: 269
|
4 |
Reiter G, Maronnier V, Sommitsch C, et al. Numerical simulation of the VAR process with calcosoft-2D and its validation[A]. International Symposium on Liquid Metal Processing and Casting[C]. Nancy, France: LMPC, 2003: 77
|
5 |
Guan J, Miao Y Y, Chen Z Z, et al. Modeling of macrosegregation formation and the effect of enhanced cooling during vacuum arc remelting solidification of NbTi alloy ingot[J]. Metall. Mater. Trans., 2022, 53B: 4048
|
6 |
Cui J J, Li B K, Liu Z Q, et al. Comparative investigation on ingot evolution and product quality under different arc distributions during vacuum arc remelting process[J]. J. Mater. Res. Technol., 2022, 18: 3991
|
7 |
Cui J J, Li B K, Liu Z Q, et al. Numerical investigation on the effect of axial magnetic field on metallurgical quality of ingots during vacuum arc remelting process[J]. J. Mater. Res. Technol., 2022, 20: 1912
|
8 |
Yang S L, Tian Q, Yu P, et al. Numerical simulation and experimental study of vacuum arc remelting (VAR) process for large-size GH4742 superalloy[J]. J. Mater. Res. Technol., 2023, 24: 2828
|
9 |
Xu X, Zhang W, Lee P D. Tree-ring formation during vacuum arc remelting of Inconel 718: part II. Mathematical modeling[J]. Metall. Mater. Trans., 2002, 33A: 1805
|
10 |
Zagrebelnyy D, Krane M J M. Segregation development in multiple melt vacuum arc remelting[J]. Metall. Mater. Trans., 2009, 40B: 281
|
11 |
Guo J, Huang L Q, Wu J Y, et al. Evolution of macrosegregation during three-stage vacuum arc remelting of titanium alloys[J]. Acta Metall. Sin., 2024, 59: 1531
|
|
郭 杰, 黄立清, 吴京洋 等. 钛合金三次真空自耗电弧熔炼过程中的宏观偏析传递行为[J]. 金属学报, 2024, 59: 1531
|
12 |
Guan J, Liu D R, Cao Y F, et al. Macro and micro segregations and prediction of carbide equivalent size in vacuum arc remelting of M50 steel via simulations and experiments[J]. Metall. Mater. Trans., 2024, 55A: 1081
|
13 |
Revil-Baudard M, Jardy A, Combeau H, et al. Solidification of a vacuum arc-remelted zirconium ingot[J]. Metall. Mater. Trans., 2014, 45B: 51
|
14 |
Mramor K, Quatravaux T, Combeau H, et al. On the prediction of macrosegregation in vacuum arc remelted ingots[J]. Metall. Mater. Trans., 2022, 53B: 2953
|
15 |
Han J J, Ren N, Zhou Y, et al. Melt convection and macrosegregation in the vacuum arc remelted Ti2AlNb ingot: Numerical methods and experimental verification[J]. J. Mater. Process. Technol., 2022, 308: 117729
|
16 |
Chapelle P, Jardy A, Bellot J P, et al. Effect of electromagnetic stirring on melt pool free surface dynamics during vacuum arc remelting[J]. J. Mater. Sci., 2008, 43: 5734
|
17 |
Karimi-Sibaki E, Kharicha A, Wu M, et al. A parametric study of the vacuum arc remelting (VAR) process: Effects of arc radius, side-arcing, and gas cooling[J]. Metall. Mater. Trans., 2020, 51B: 222
|
18 |
Karimi-Sibaki E, Kharicha A, Abdi M, et al. A Numerical study on the influence of an axial magnetic field (AMF) on vacuum arc remelting (VAR) process[J]. Metall. Mater. Trans., 2021, 52B: 3354
|
19 |
Karimi-Sibaki E, Kharicha A, Vakhrushev A, et al. Numerical modeling and experimental validation of the effect of arc distribution on the as-solidified Ti64 ingot in vacuum arc remelting (VAR) process[J]. J. Mater. Res. Technol., 2022, 19: 183
|
20 |
Gandin C A, Rappaz M. A 3D cellular automaton algorithm for the prediction of dendritic grain growth[J]. Acta Mater., 1997, 45: 2187
|
21 |
Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification[J]. Acta Metall., 1986, 34: 823
|
22 |
Nastac L. Multiscale modelling approach for predicting solidification structure evolution in vacuum arc remelted superalloy ingots[J]. Mater. Sci. Technol., 2012, 28: 1006
|
23 |
Nastac L. A multiscale transient modeling approach for predicting the solidification structure in VAR-processed alloy 718 ingots[J]. Metall. Mater. Trans., 2014, 45B: 44
|
24 |
Wang W, Lee P D, McLean M. A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection[J]. Acta Mater., 2003, 51: 2971
|
25 |
Zhao Y H, Xing H, Zhang L J, et al. Development of phase-field modeling in materials science in China: A review[J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 1749
|
26 |
Tourret D, Liu H, LLorca J. Phase-field modeling of microstructure evolution: Recent applications, perspectives and challenges[J]. Prog. Mater. Sci., 2022, 123: 100810
|
27 |
Yuan L, Djambazov G, Lee P D, et al. Multiscale modeling of the vacuum arc remelting process for the prediction on microstructure formation[J]. Int. J. Mod. Phys., 2009, 23B: 1584
|
28 |
Guo J. Multi-scale simulation of segregation and solidfication structure during the vacuum arc remelting of TC17 alloy[D]. Xi'an: Northwestern Polytechnical University, 2023
|
|
郭 杰. TC17合金VAR铸锭宏/微观偏析及组织演化模拟[D]. 西安: 西北工业大学, 2023
|
29 |
Cui J J, Li B K, Liu Z Q, et al. Numerical investigation of grain structure under the rotating arc based on cellular automata-finite element method during vacuum arc remelting process[J]. Metall. Mater. Trans., 2023, 54B: 661
|
30 |
Sun X Y, Lv G L, Li X M, et al. Numerical simulation of VAR for large-scale TC4 alloy during the solidification process[J]. Int. J. Cast Met. Res., 2024, 37: 1
|
31 |
Wang Y D, Zhang L F, Zhang J, et al. Simulation of solidification structure during vacuum arc remelting using cellular automaton-finite element method[J]. Steel Res. Int., 2022, 93: 2100408
|
32 |
Zhu M M, Lv G L, Li X M, et al. Numerical simulation of cellular automaton in vacuum arc remelting during the solidification process[J]. Mater. Res. Express, 2023, 10: 046518
|
33 |
Kermanpur A, Lee P D, McLean M, et al. Integrated modeling for the manufacture of aerospace discs: Grain structure evolution[J]. JOM, 2004, 56: 72
|
34 |
Bellet M, Combeau H, Fautrelle Y, et al. Call for contributions to a numerical benchmark problem for 2D columnar solidification of binary alloys[J]. Int. J. Therm. Sci., 2009, 48: 2013
|
35 |
Ren N, Li J, Zhang R Y, et al. Solute trapping and non-equilibrium microstructure during rapid solidification of additive manufacturing[J]. Nat. Commun., 2023, 14: 7990
doi: 10.1038/s41467-023-43563-x
pmid: 38042908
|
36 |
Lopez L F, Beaman J J, Williamson R L. A reduced-order model for dynamic vacuum arc remelting pool depth estimation and control[A]. ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control[C]. Arlington: ASME, 2011: 517
|
37 |
Kondrashov E N, Musatov M I, Maksimov A Y, et al. Calculation of the molten pool depth in vacuum arc remelting of alloy Vt3-1[J]. J. Eng. Thermophys., 2007, 16: 19
|
38 |
Leder M O, Gorina A V, Kornilova M A, et al. Determination of the thermophysical properties of titanium alloys from liquid bath profiles[J]. Russ. Metall., 2015, 2015: 964
|
39 |
Kondrashov E N, Leder M O, Maksimov A Y. Simulation of the VT3-1 alloy ingot solidification during VAR[J]. Russ. Metall., 2018, 2018: 1114
|
40 |
Quatravaux T, Ryberon S, Hans S, et al. Transient VAR ingot growth modelling: Application to specialty steels[J]. J. Mater. Sci., 2004, 39: 7183
|
41 |
Delzant P O, Baqué B, Chapelle P, et al. On the modeling of thermal radiation at the top surface of a vacuum arc remelting ingot[J]. Metall. Mater. Trans., 2018, 49B: 958
|
42 |
Zhao X H, Li J S, Yang Z J, et al. Numerical simulation of temperature field in vacuum arc remelting Ti alloy[J]. Spec. Cast. Nonferrous Alloys, 2010, 30: 1001
|
|
赵小花, 李金山, 杨治军 等. 钛合金真空自耗电弧熔炼过程中温度场的数值模拟[J]. 特种铸造及有色合金, 2010, 30: 1001
|
43 |
Yang Z J, Zhao X H, Kou H C, et al. Numerical simulation of temperature distribution and heat transfer during solidification of titanium alloy ingots in vacuum arc remelting process[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1957
|
44 |
Wang J L, Hao M Y, Tan Q M, et al. Numerical simulation and crack prediction of TD3 Alloy during vacuum arc remelting[J]. Spec. Cast. Nonferrous Alloys, 2024, 44: 916
|
|
王建磊, 郝孟一, 谭启明 等. TD3真空自耗熔炼过程数值模拟及裂纹预测[J]. 特种铸造及有色合金, 2024, 44: 916
|
45 |
Huang Y S, Yang M S, Li J S, et al. Vacuum arc remelting process of high-alloy bearing steel and multi-scale control of solidification structure[J]. Mater. Sci. Forum, 2015, 817: 826
|
46 |
Pan T, Zhu H C, Jiang Z H, et al. Mechanism of local solidification time variations with melt rate during vacuum arc remelting process of 8Cr4Mo4V high-strength steel[J]. J. Iron Steel Res. Int., 2024, 31: 377
|
47 |
Wang Y Y, Liu X H, Xia Y, et al. Effect of cooling conditions on the temperature field and macrosegregation of Cr element of TC6 alloy ingot[J]. Rare Met. Mater. Eng., 2023, 52: 4245
|
|
王阳阳, 刘向宏, 夏 勇 等. 冷却条件对TC6合金温度场和Cr偏析的影响[J]. 稀有金属材料与工程, 2023, 52: 4245
|
48 |
Spitans S, Franz H, Scholz H, et al. Numerical simulation of the ingot growth during the vacuum arc remelting (VAR) process[J]. Magnetohydrodynamics, 2017, 53: 557
|
49 |
Davidson P A, He X, Lowe A J. Flow transitions in vacuum arc remelting[J]. Mater. Sci. Technol., 2000, 16: 699
|
50 |
Pickering E J. Macrosegregation in steel ingots: The applicability of modelling and characterisation techniques[J]. ISIJ Int., 2013, 53: 935
|
51 |
Yu K O, Domingue J A, Maurer G E, et al. Macrosegregation in ESR and VAR processes[J]. JOM, 1986, 38: 46
|
52 |
Kondrashov E N, Tarenkova N Y, Maksimov A Y, et al. Study of the crystallization morphology of VT3-1 alloy during VAR[J]. J. Eng. Thermophys., 2009, 18: 80
|
53 |
Kermanpur A, Evans D G, Siddall R J, et al. Effect of process parameters on grain structure formation during VAR of Inconel alloy 718[J]. J. Mater. Sci., 2004, 39: 7175
|
54 |
Davidson P A, Kinnear D, Lingwood R J, et al. The role of Ekman pumping and the dominance of swirl in confined flows driven by Lorentz forces[J]. Eur. J. Mech., 1999, 18B: 693
|
55 |
Fan K, Wu L C, Li J J, et al. Numerical simulation of macrosegregation caused by buoyancy driven flow during VAR process for titanium alloys[J]. Rare Met. Mater. Eng., 2020, 49: 871
|
|
樊 凯, 吴林财, 李俊杰 等. 钛合金VAR过程中自然对流下的宏观偏析行为模拟[J]. 稀有金属材料与工程, 2020, 49: 871
|
56 |
Zhao X H, Li J S, Yang Z J, et al. Numerical simulation of fluid flow caused by buoyancy forces during vacuum arc remelting process[J]. J. Shanghai Jiaotong Univ. (Sci.), 2011, 16: 272
|
57 |
Zagrebelnyy D V. Modeling macrosegregation during the vacuum arc remelting of Ti-10V-2Fe-3Al alloy[D]. West Lafayette: Purdue University, 2007
|
58 |
Wu J Y. Thesis submitted in partial fulfillment of the requirements for the degree of master of science[D]. Xi'an: Northwestern Polytechnical University, 2021
|
|
吴京洋. 钛合金VAR过程中熔体流动及宏观偏析行为的数值模拟[D]. 西安: 西北工业大学, 2021
|
59 |
Huang L Q, Wu J Y, Guo J, et al. Effect of self-induced magnetic field on liquid flow and segregation during VAR process for titanium alloys[J]. Iron Steel Vanadium Titanium, 2023, 44(4): 55
|
|
黄立清, 吴京洋, 郭 杰 等. 钛合金VAR过程中自感电磁场对流场与偏析行为的影响[J]. 钢铁钒钛, 2023, 44(4): 55
|
60 |
Kou H, Zhang Y J, Yang Z J, et al. Liquid metal flow behavior during vacuum consumable arc remelting process for titanium[J]. Int. J. Eng. Technol., 2014, 12: 50
|
61 |
Huang L Q, Fan K, Guo J, et al. Simulation study on the effect of VAR magnetic stirring process on the melt flow[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 65
|
|
黄立清, 樊 凯, 郭 杰 等. VAR电磁搅拌工艺对熔体流动影响的模拟研究[J]. 钢铁钒钛, 2024, 45(1): 65
|
62 |
Shevchenko D M, Ward R M. Liquid metal pool behavior during the vacuum arc remelting of Inconel 718[J]. Metall. Mater. Trans., 2009, 40B: 263
|
63 |
Delzant P O, Chapelle P, Jardy A, et al. Investigation of arc dynamics during vacuum arc remelting of a Ti64 alloy using a photodiode based instrumentation[J]. J. Mater. Process. Technol., 2019, 266: 10
|
64 |
Woodside C R, King P E, Nordlund C. Arc distribution during the vacuum arc remelting of Ti-6Al-4V[J]. Metall. Mater. Trans., 2013, 44B: 154
|
65 |
Delzant P O, Chapelle P, Jardy A, et al. Impact of a transient and asymmetrical distribution of the electric arc on the solidification conditions of the ingot in the VAR process[J]. Metals, 2022, 12: 500
|
66 |
Dobatkin V I, Anoshkin N F. Comparison of macrosegregation in titanium and aluminium alloy ingots[J]. Mater. Sci. Eng., 1999, A263: 224
|
67 |
Zhao Y Q, Liu J L, Zhou L. Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys[J]. Rare Met. Mater. Eng., 2005, 34: 531
|
|
赵永庆, 刘军林, 周 廉. 典型β型钛合金元素Cu, Fe和Cr的偏析规律[J]. 稀有金属材料与工程, 2005, 34: 531
|
68 |
Dai Y, Cao J H, Qin Y M, et al. Numerical simulation of melt convection and macrosegregation of Ti60 alloy ingot during the vacuum arc remelting[J]. Rare Met. Mater. Eng., 2024, 53: 701
|
|
戴 毅, 曹江海, 秦羽满 等. Ti60合金VAR熔炼过程熔体流动与宏观偏析的数值模拟研究[J]. 稀有金属材料与工程, 2024, 53: 701
|
69 |
Zhao X H, Wang J C, Liu P, et al. Effect of electrode block’s mixing uniformity on titanium alloy ingot’s composition[J]. Titanium Ind. Prog., 2021, 38(4): 1
|
|
赵小花, 王锦程, 刘 鹏 等. 钛合金电极块混料均匀性对铸锭成分的影响[J]. 钛工业进展, 2021, 38(4): 1
|
70 |
Jiang D B, Yang F Z, Zhang J, et al. Effect of feeding parameters on ingot segregation and shrinkage pore in vacuum arc remelting[J]. J. Iron Steel Res. Int., 2023, 30: 1268
|
71 |
Jing Z Q, Liu R, Geng N T, et al. Simulation of solidification structure in the vacuum arc remelting process of titanium alloy TC4 based on 3D CAFE method[J]. Processes, 2024, 12: 802
|
72 |
Atwood R C, Lee P D, Minisandram R S, et al. Multiscale modelling of microstructure formation during vacuum arc remelting of titanium 6-4[J]. J. Mater. Sci., 2004, 39: 7193
|
73 |
Li X, Zhang T, Jiang H, et al. Predicting the three-dimensional grain structure of superalloys during vacuum arc remelting process[J]. J. Mater. Res. Technol., 2023, 25: 5938
|
74 |
Kou H C, Zhang Y J, Li P F, et al. Numerical simulation of titanium alloy ingot solidification structure during VAR process based on three-dimensional CAFE method[J]. Rare Met. Mater. Eng., 2014, 43: 1537
|
75 |
Zhao X H, Wang J C, Wang K X, et al. Numerical simulation and experimental validation on the effect of stirring coils' parameters on TC17 ingot during vacuum arc remelting process[J]. Rare Met. Mater. Eng., 2023, 52: 2676
|
76 |
Wang X H, Ward R M, Jacobs M H, et al. Effect of variation in process parameters on the formation of freckle in Inconel 718 by vacuum arc remelting[J]. Metall. Mater. Trans., 2008, 39A: 2981
|
77 |
Beckermann C, Gu J P, Boettinger W J. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings[J]. Metall. Mater. Trans., 2000, 31A: 2545
|
78 |
Yang W H, Chang K M, Chen W, et al. Freckle criteria for the upward directional solidification of alloys[J]. Metall. Mater. Trans., 2001, 32A: 397
|
79 |
Jardy A, Ablitzer D. Mathematical modelling of superalloy remelting operations[J]. Mater. Sci. Technol., 2009, 25: 163
|
80 |
Patel A D, Minisandram R S, Evans D G. Modeling of vacuum arc remelting of alloy 718 ingots[A]. Superalloys 2004[C]. Charlotte, NC: TMS, 2004: 917
|
81 |
Jackman L A, Maurer G E, Widge S. New knowledge about ‘white spots’ in superalloys[J]. Adv. Mater. Processes, 1993, 143: 18
|
82 |
Zhang W, Lee P D, McLean M. Numerical simulation of dendrite white spot formation during vacuum arc remelting of Inconel 718[J]. Metall. Mater. Trans., 2002, 33A: 443
|
83 |
Jiang D B, Zhang L F. Operation parameters on white spot formation in vacuum arc remelting[J]. JOM, 2023, 75: 1505
|
84 |
Jiang D B, Ren Y, Zhang L F. Numerical simulation of inclusion distribution in vacuum arc remelting ingot[J]. Metall. Mater. Trans., 2023, 54B: 1342
|
85 |
Ghazal G, Jardy A, Chapelle P, et al. On the dissolution of nitrided titanium defects during vacuum arc remelting of Ti alloys[J]. Metall. Mater. Trans., 2010, 41B: 646
|
86 |
Bellot J P, Ablitzer D, Foster B, et al. Dissolution of hard-alpha inclusions in liquid titanium alloys[J]. Metall. Mater. Trans., 1997, 28B: 1001
|
87 |
Li M Y, Yang S F, Liu W, et al. Research process on segregation and control of titanium alloy during vacuum arc remelting[J]. China Metall., 2023, 33(9): 1
|
|
李明宇, 杨树峰, 刘 威 等. 真空自耗熔炼钛合金的偏析缺陷及控制研究进展[J]. 中国冶金, 2023, 33(9): 1
|
88 |
Shamblen C E. Minimizing beta flecks in the Ti-17 alloy[J]. Metall. Mater. Trans., 1997, 28B: 899
|
89 |
Zeng W D, Zhou Y G, Yu H Q. Effect of beta flecks on low-cycle fatigue properties of Ti-10V-2Fe-3Al[J]. J. Mater. Eng. Perform., 2000, 9: 222
|
90 |
Kawakami A. Study on segregation behavior of alloying elements in titanium alloys during solidification[D]. Vancouver: University of British Columbia, 2002
|
91 |
Mitchell A, Kawakami A, Cockcroft S L. Beta fleck and segregation in titanium alloy ingots[J]. High Temp. Mater. Processes, 2006, 25: 337
|
92 |
Yin X C. Study on beta flecks and formation mechanisms in TC17 alloy[D]. Hefei: University of Science and Technology of China, 2020
|
|
尹续臣. TC17合金中的β斑及其形成机制研究[D]. 合肥: 中国科学技术大学, 2020
|
93 |
Yin X C, Liu J R, Wang Q J, et al. Investigation of beta fleck formation in Ti-17 alloy by directional solidification method[J]. J. Mater. Sci. Technol., 2020, 48: 36
doi: 10.1016/j.jmst.2019.12.018
|
94 |
Ji Q T, Yu J, Ning J, et al. Numerical simulation of vacuum arc remelting process of USS122G ingot[J]. Iron Steel, 2022, 57(10): 127
|
|
汲庆涛, 于 杰, 宁 静 等. USS122G钢锭真空电弧重熔工艺的数值模拟[J]. 钢铁, 2022, 57(10): 127
doi: 10.13228/j.boyuan.issn0449-749x.20220188
|
95 |
Wang Y, Ma D S, Yang M S, et al. Numerical simulation of vacuum consumable arc melting optimization for high alloy stainless bearing steel[J]. China Metall., 2023, 33(9): 35
|
|
王 杨, 马党参, 杨卯生 等. 高合金不锈轴承钢真空自耗熔炼数值模拟优化[J]. 中国冶金, 2023, 33(9): 35
|
96 |
Wang Y D, Zhang L F, Zhang J, et al. Numerical simulation of macrosegregation in vacuum arc remelting process[J]. J. Iron Steel Res. Int., 2021, 33: 718
|
|
王亚栋, 张立峰, 张 健 等. 真空自耗熔炼过程宏观偏析的数值模拟[J]. 钢铁研究学报, 2021, 33: 718
doi: 10.13228/j.boyuan.issn1001-0963.20210110
|
97 |
Wen H, Zheng Y B, Chen F, et al. Research on melting technology of TC2 titanium alloy ingot depend on MeltFlow-VAR[J]. World Nonferrous Met., 2022, (14): 12
|
|
文 豪, 郑亚波, 陈 峰 等. 基于MeltFlow-VAR的TC2钛合金铸锭熔炼工艺研究[J]. 世界有色金属, 2022, (14): 12
|
98 |
Jing Z Q, Sun Y H, Liu R, et al. Effect of vacuum arc remelting process parameters on macrosegregation in TC4 titanium alloy[J]. Rare Met. Mater. Eng., 2023, 52: 815
|
99 |
Patel A, Fiore D. On the modeling of vacuum arc remelting process in titanium alloys[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2016, 143: 012017
|
100 |
Luo W Z, Zhao X H, Liu P, et al. Computational simulation of factors affecting surface quality of titanium alloy ingot in VAR process[J]. Rare Met. Mater. Eng., 2020, 49: 927
|
|
罗文忠, 赵小花, 刘 鹏 等. 采用数值模拟方法分析影响VAR熔炼钛合金铸锭表面质量的因素[J]. 稀有金属材料与工程, 2020, 49: 927
|
101 |
Li T, Hua Q, Liu H, et al. Research on the melting process of TC17 titanium alloy ingots based on MeltFlow VAR[J]. Spec. Steel Technol., 2024, 30(2): 12
|
|
李 彤, 华 倩, 刘 华 等. 基于MeltFlow-VAR的TC17钛合金铸锭熔炼工艺研究[J]. 特钢技术, 2024, 30(2): 12
|
102 |
Ward R M, Jacobs M H. Electrical and magnetic techniques for monitoring arc behaviour during VAR of Inconel1 718: Results from different operating conditions[J]. J. Mater. Sci., 2004, 39: 7135
|
103 |
Zhang W B, Sun D K, Chen W, et al. Lattice Boltzmann modeling of convective heat and solute transfer in additive manufacturing of multi-component alloys[J]. Addit. Manuf., 2024, 84: 104089
|
104 |
Liu Y L, Sun D K, Zhang Z X, et al. A lattice Boltzmann model for incompressible gas and liquid two-phase flows combined with free-surface method[J]. Phys. Fluids, 2024, 36: 032124
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|