Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (11): 1362-1379    DOI: 10.11900/0412.1961.2021.00349
Overview Current Issue | Archive | Adv Search |
Development and Application of Plastic Processing Technologies of Magnesium Alloys
PAN Fusheng1,2, JIANG Bin1,2()
1.National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
2.Collegue of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
Cite this article: 

PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys. Acta Metall Sin, 2021, 57(11): 1362-1379.

Download:  HTML  PDF(1543KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

China has the most abundant magnesium resources in the world. Magnesium and its alloys have the advantages of low density, high specific strength, good damping property, and exceptional electromagnetic-shielding and energy-storage characteristics. They are one of the most promising lightweight materials. The enhanced applications of magnesium alloys can save energy and reduce emissions and are significant to the new Chinese energy strategy. However, magnesium alloys have a hexagonal close-packed structure and exhibit relatively low ductility. A bottleneck in expanding the application of magnesium alloys is improving the ductility of magnesium alloys. For more than ten years, efforts have been made to improve the ductility and plastic deformation ability. Progress has been made in plastic-processing technologies of magnesium alloys. The novel alloy design theory “solid solution strengthening and ductilizing” and advanced preparation technologies such as “melt self-purification through varying temperature” have been established. Series of new magnesium alloys with good ductility and corresponding alloy grades have been developed, where the impurity content of iron can be reduced to below 10 × 10-6; the elongation was more than 60% for ultrahigh plasticity magnesium alloys and is above 10% for the ultrahigh-strength magnesium alloys (UTS > 550 MPa). New plastic-processing technologies, such as asymmetric extrusion, asymmetric rolling, asymmetric modification, cyclical multipass upsetting and squeezing, expansion control large ratio forging, and extrusion and forging composite forming, have been developed. These newly developed magnesium alloys and processing technologies weaken the basal texture in wrought magnesium alloys, improving the formability of sheets, tubes, profiles, and forgings and their product quality and reducing their product cost. These technologies have been successfully applied in the processing of magnesium sheets, pipe profiles, and forgings.

Key words:  magnesium alloy      formability      plastic processing      asymmetric processing      application     
Received:  23 August 2021     
ZTFLH:  TG111.8  
Fund: National Natural Science Foundation of China(U1764253)
About author:  JIANG BIN, professor, Tel: (023)65102821, E-mail: jiangbinrong@cqu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00349     OR     https://www.ams.org.cn/EN/Y2021/V57/I11/1362

Fig.1  Solid solution strengthening and ductilizing to design new Mg alloys (Δτ, Δτ'—difference of sliding resistance) (a-h)[47]
Element

Solubility in Mg

(atomic fraction / %)

ΔτCRSS at the most solubility

MPa

ΔτCRSS at 1% (atomic fraction) solubility / MPa
Gd4.5323.2210.91
Ca0.416.8510.71
Yb1.211.1510.18
Mn0.99610.1310.15
Y3.416.719.06
Dy4.8318.898.6
Er6.919.057.25
Si1.164.754.41
Ag3.838.544.37
Zn2.695.233.19
Sb002.37
Al11.57.082.09
Sc156.111.58
Ti0.120.491.41
Sn3.352.341.28
Li174.81.17
Zr1.0410.98
Fe0.000430.24-
Table 1  Basal CRSS changes of Mg with different solutes[47]
Fig.2  Equipment of online heating rolling (a) and its schematic diagram (b)[147,148]
Fig.3  Continuous bending experiment (V—velocity of sheet, T—pull force, θ—bending angle of sheet)[224,225]
Fig.4  Wide sheet of AZ31 magnesium alloy (The width is 1.5-2.2 m)
Fig.5  Wide profile (width is 502 mm) (a) and large circular component (diameter is 3.49 m) (b)
1 Zhang J Y, Jian Y X, Zhao X Z, et al. The tribological behavior of a surface-nanocrystallized magnesium alloy AZ31 sheet after ultrasonic shot peening treatment [J]. J. Magnes. Alloy., 2021, 9: 1187
2 Zhang C Y, Zhang S Y, Sun D W, et al. Superhydrophobic fluoride conversion coating on bioresorbable magnesium alloy—Fabrication, characterization, degradation and cytocompatibility with BMSCs [J]. J. Magnes. Alloy., 2021, 9: 1246
3 Wu T C, Joshi S S, Ho Y H, et al. Microstructure and surface texture driven improvement in in-vitro response of laser surface processed AZ31B magnesium alloy [J]. J. Magnes. Alloy., 2021, 9: 1406
4 Motlagh E B, Lynch P A, Dorin T, et al. X-ray analysis of twin dominated deformation in an aged Mg-7Sn-3Zn-0.04Na alloy [J]. J. Magnes. Alloy., 2021, 9: 1201
5 Marzbanrad B, Razmpoosh M H, Toyserkani E, et al. Role of heat balance on the microstructure evolution of cold spray coated AZ31B with AA7075 [J]. J. Magnes. Alloy., 2021, 9: 1458
6 Liao H B, Zhan M Y, Li C B, et al. Grain refinement of Mg-Al alloys inoculated by MgAl2O4 powder [J]. J. Magnes. Alloy., 2021, 9: 1211
7 Yu H, Fan S D, Meng S J, et al. Microstructural evolution and mechanical properties of binary Mg-xBi (x = 2, 5, and 8 wt%) alloys [J]. J. Magnes. Alloy., 2021, 9: 983
8 Shi Z Z, Chen H T, Zhang K, et al. Crystallography of precipitates in Mg alloys [J]. J. Magnes. Alloy., 2021, 9: 416
9 Rekab-Djabri H, Salam M M A, Daoud S, et al. Ground state parameters, electronic properties and elastic constants of CaMg3: DFT study [J]. J. Magnes. Alloy., 2020, 8: 1166
10 Medina J, Garces G, Pérez P, et al. High temperature mechanical behaviour of Mg-6Zn-1Y alloy with 1wt. % calcium addition: Reinforcing effect due to I-(Mg3Zn6Y1) and Mg6Zn3Ca2 phases [J]. J. Magnes. Alloy., 2020, 8: 1047
11 Kim Y J, Lee J U, Kim Y M, et al. Microstructural evolution and grain growth mechanism of pre-twinned magnesium alloy during annealing [J]. J. Magnes. Alloy., 2021, 9: 1233
12 Fu J L, Du W B, Jia L Y, et al. Cooling rate controlled basal precipitates and age hardening response of solid-soluted Mg-Gd-Er-Zn-Zr alloy [J]. J. Magnes. Alloy., 2021, 9: 1261
13 Ding C, Hu X S, Shi H L, et al. Development and strengthening mechanisms of a hybrid CNTs@SiCp/Mg-6Zn composite fabricated by a novel method [J]. J. Magnes. Alloy., 2021, 9: 1363
14 Cui X J, Ning C M, Zhang G A, et al. Properties of polydimethylsiloxane hydrophobic modified duplex microarc oxidation/diamond-like carbon coatings on AZ31B Mg alloy [J]. J. Magnes. Alloy., 2021, 9: 1285
15 Li X Q, Ren L, Le Q C, et al. Reducing the yield asymmetry in Mg-5Li-3Al-2Zn alloy by hot-extrusion and multi-pass rolling [J]. J. Magnes. Alloy., 2021, 9: 937
16 Lv B J, Wang S, Xu T W, et al. Effects of minor Nd and Er additions on the precipitation evolution and dynamic recrystallization behavior of Mg-6.0Zn-0.5 Mn alloy [J]. J. Magnes. Alloy., 2021, 9: 840
17 Liu C Q, Chen X H, Chen J, et al. The effects of Ca and Mn on the microstructure, texture and mechanical properties of Mg-4Zn alloy [J]. J. Magnes. Alloy., 2021, 9: 1084
18 Silva E P, Buzolin R H, Marques F, et al. Effect of Ce-base mischmetal addition on the microstructure and mechanical properties of hot-rolled ZK60 alloy [J]. J. Magnes. Alloy., 2021, 9: 995
19 Sun B Z, Zhang H X, Dong Y, et al. Rotational and translational domains of beta precipitate in aged binary Mg-Ce alloys [J]. J. Magnes. Alloy., 2021, 9: 1039
20 Wang C, Luo T J, Liu Y T, et al. Residual stress and precipitation of Mg-5Zn-3.5Sn-1Mn-0.5Ca-0.5Cu alloy with different quenching rates [J]. J. Magnes. Alloy., 2021, 9: 604
21 Tang W Q, Lee J Y, Wang H M, et al. Unloading behaviors of the rare-earth magnesium alloy ZE10 sheet [J]. J. Magnes. Alloy., 2021, 9: 927
22 Tong L B, Chu J H, Sun W T, et al. Development of a high-strength Mg alloy with superior ductility through a unique texture modification from equal channel angular pressing [J]. J. Magnes. Alloy., 2021, 9: 1007
23 Zhao L Y, Yan H, Chen R S, et al. The preferential growth and related textural evolution during static recrystallization in a cold-rolled Mg-Zn-Gd alloy [J]. J. Magnes. Alloy., 2021, 9: 818
24 Balasubramani N, Wang G, Easton M A, et al. A comparative study of the role of solute, potent particles and ultrasonic treatment during solidification of pure Mg, Mg-Zn and Mg-Zr alloys [J]. J. Magnes. Alloy., 2021, 9: 829
25 Guan K, Ma R, Zhang J H, et al. Modifying microstructures and tensile properties of Mg-Sm based alloy via extrusion ratio [J]. J. Magnes. Alloy., 2021, 9: 1098
26 Chapuis A, Liu Q. Modeling strain rate sensitivity and high temperature deformation of Mg-3Al-1Zn alloy [J]. J. Magnes. Alloy., 2019, 7: 433
27 Dobroň P, Drozdenko D, Fekete K, et al. The slip activity during the transition from elastic to plastic tensile deformation of the Mg-Al-Mn sheet [J]. J. Magnes. Alloy., 2021, 9: 1057
28 Gui Y W, Ouyang L X, Cui Y J, et al. Grain refinement and weak-textured structures based on the dynamic recrystallization of Mg-9.80Gd-3.78Y-1.12Sm-0.48Zr alloy [J]. J. Magnes. Alloy., 2021, 9: 456
29 Hwang J H, Zargaran A, Park G, et al. Effect of 1Al addition on deformation behavior of Mg [J]. J. Magnes. Alloy., 2021, 9: 489
30 Liu Y X, Li Y X, Zhu Q C, et al. Twin recrystallization mechanisms in a high strain rate compressed Mg-Zn alloy [J]. J. Magnes. Alloy., 2021, 9: 499
31 Cheng Q, Chen L, Tang J W, et al. A comprehensive analysis on microstructure evolution of Mg-5.65Zn-0.66Zr alloy during hot deformation [J]. J. Magnes. Alloy., 2021, 9: 520
32 Tang W R, Liu Z, Liu S M, et al. Deformation mechanism of fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy under high temperature and high strain rates [J]. J. Magnes. Alloy., 2020, 8: 1144
33 Abouhilou F, Hanna A, Azzeddine H, et al. Microstructure and texture evolution of AZ31 Mg alloy after uniaxial compression and annealing [J]. J. Magnes. Alloy., 2019, 7: 124
34 Wan X, Zhang J, Mo X Y, et al. 3D atomic-scale growth characteristics of {101¯2} twin in magnesium [J]. J. Magnes. Alloy., 2019, 7: 474
35 Varma R, Kada S, Barnett M. Effect of plastic deformation on microstructure and thermoelectric properties of Mg2Sn alloys [J]. J. Magnes. Alloy., 2021, 9: 123
36 Zhang Y, Jiang H T, Kang Q, et al. Microstructure evolution and mechanical property of Mg-3Al alloys with addition of Ca and Gd during rolling and annealing process [J]. J. Magnes. Alloy., 2020, 8: 769
37 Sheng L Y, Du B N, Hu Z Y, et al. Effects of annealing treatment on microstructure and tensile behavior of the Mg-Zn-Y-Nd alloy [J]. J. Magnes. Alloy., 2020, 8: 601
38 Lee S W, Kim S H, Park S H. Microstructural characteristics of AZ31 alloys rolled at room and cryogenic temperatures and their variation during annealing [J]. J. Magnes. Alloy., 2020, 8: 537
39 Kong T, Kwak B J, Kim J, et al. Tailoring strength-ductility balance of caliber-rolled AZ31 Mg alloy through subsequent annealing [J]. J. Magnes. Alloy., 2020, 8: 163
40 Zhang F, Liu Z, Wang Y, et al. The modified temperature term on Johnson-Cook constitutive model of AZ31 magnesium alloy with {0002} texture [J]. J. Magnes. Alloy., 2020, 8: 172
41 Yu J C, Song B, Xia D B, et al. Dynamic tensile properties and microstructural evolution of extruded EW75 magnesium alloy at high strain rates [J]. J. Magnes. Alloy., 2020, 8: 849
42 Xia X S, Zhang K, Ma M L, et al. Constitutive modeling of flow behavior and processing maps of Mg-8.1Gd-4.5Y-0.3Zr alloy [J]. J. Magnes. Alloy., 2020, 8: 917
43 Xu T C, Yang Y, Peng X D, et al. Overview of advancement and development trend on magnesium alloy [J]. J. Magnes. Alloy., 2019, 7: 536
44 Sriraman N, Kumaran S, Narayanan N S. Influence of thermomechanical processing on microstructure, mechanical and strain hardening properties of single-phase Mg-4Li-0.5Ca alloy for structural application [J]. J. Magnes. Alloy., 2020, 8: 1262
45 Islam R, Haghshenas M. Statistical optimization of stress level in Mg-Li-Al alloys upon hot compression testing [J]. J. Magnes. Alloy., 2019, 7: 203
46 Lian Y, Ji P E, Zhang J, et al. Effect of homogenization annealing on internal residual stress distribution and texture in ME21 magnesium alloy extruded plates [J]. J. Magnes. Alloy., 2019, 7: 186
47 Liu T T, Pan F S. Development and application of “solid solution strengthening and ductilizing” for magnesium alloys [J]. Chin. J. Nonferrous Met., 2019, 29: 2050
刘婷婷, 潘复生. 镁合金“固溶强化增塑”理论的发展和应用 [J]. 中国有色金属学报, 2019, 29: 2050
48 Yu Z W, Tang A T, He J J, et al. Effect of high content of manganese on microstructure, texture and mechanical properties of magnesium alloy [J]. Mater. Charact., 2018, 136: 310
49 Hidalgo-Manrique P, Herrera-Solaz V, Segurado J, et al. Origin of the reversed yield asymmetry in Mg-rare earth alloys at high temperature [J]. Acta Mater., 2015, 92: 265
50 Yang Q S, Jiang B, Jiang W, et al. Evolution of microstructure and mechanical properties of Mg-Mn-Ce alloys under hot extrusion [J]. Mater. Sci. Eng., 2015, A628: 143
51 She J, Peng P, Xiao L, et al. Development of high strength and ductility in Mg-2Zn extruded alloy by high content Mn-alloying [J]. Mater. Sci. Eng., 2019, A765: 138203
52 She J, Pan F S, Guo W, et al. Effect of high Mn content on development of ultra-fine grain extruded magnesium alloy [J]. Mater. Des., 2016, 90: 7
53 Pan F, Mao J J, Zhang G, et al. Development of high-strength, low-cost wrought Mg-2.0 mass% Zn alloy with high Mn content [J]. Prog. Nat. Sci.: Mater. Int., 2016, 26: 630
54 Zhao T S, Hu Y B, He B, et al. Effect of manganese on microstructure and properties of Mg-2Gd magnesium alloy [J]. Mater. Sci. Eng., 2019, A765: 138292
55 Hu Y B, Deng J, Zhao C, et al. Microstructure and mechanical properties of Mg-Gd-Zr alloys with low gadolinium contents [J]. J. Mater. Sci., 2011, 46: 5838
56 Peng P, Tang A T, She J, et al. Significant improvement in yield stress of Mg-Gd-Mn alloy by forming bimodal grain structure [J]. Mater. Sci. Eng., 2021, A803: 140569
57 Huang L, Huang G S, Deng Q Y, et al. Effects of trace Ce and Ca on microstructure evolution and formability of AZ31 alloys [J]. Chin. J. Nonferrous Met., 2019, 29: 429
黄 伦, 黄光胜, 邓钱元等. 微量Ce和Ca对AZ31组织演变及成形性能的影响 [J]. 中国有色金属学报, 2019, 29: 429
58 Wang G G, Huang G S, Huang Y, et al. Achieving high ductility in hot-rolled Mg-xZn-0.2Ca-0.2Ce sheet by Zn addition [J]. JOM, 2020, 72: 1607
59 Hu H, Luo A L. Inclusions in molten magnes. Potential assessment techniques [J]. JOM, 1996, 48(10): 47
60 Han Y F, Liu J R, Shen S J, et al. Non-metallic inclusions in magnesium alloy and purification methods [J]. Found. Technol., 2006, 27: 613
韩英芬, 刘建睿, 沈淑娟等. 镁合金中的非金属夹杂物及其净化方法 [J]. 铸造技术, 2006, 27: 613
61 Pan F S, Huang G S, Deng Q Y, et al. Metal melt purifying device [P]. Chin Pat, 201710366670.9, 2017
潘复生, 黄光胜, 邓钱元等. 一种金属熔体的净化装置 [P]. 中国专利, 201710366670.9, 2017)
62 Hou Z Q, Jiang B, Wang Y Y, et al. Development and application of new magnesium alloy materials and their new preparation and processing technologies [J]. Aerosp. Shanghai (Chin. Engl.), 2021, 38(3): 119
候正全, 蒋 斌, 王煜烨等. 镁合金新材料及制备加工新技术发展与应用 [J]. 上海航天(中英文), 2021, 38(3): 119
63 Pan F S, Chen X H, Yan T, et al. A novel approach to melt purification of magnesium alloys [J]. J. Magnes. Alloy., 2016, 4: 8
64 Pan F S, Yang M B, Chen X H. A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys [J]. J. Mater. Sci. Technol., 2016, 32: 1211
65 Dai Y, Chen X H, Yan T, et al. Improved corrosion resistance in AZ61 magnesium alloys induced by impurity reduction [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 225
66 Lee Y C, Dahle A K, Stjohn D H. The role of solute in grain refinement of magnesium [J]. Metall. Mater. Trans., 2000, 31A: 2895
67 Ali Y, Qiu D, Jiang B, et al. Current research progress in grain refinement of cast magnesium alloys: A review article [J]. J. Alloys Compd., 2015, 619: 639
68 Kelly P M, Zhang M X. Edge-to-edge matching—The fundamentals [J]. Metall. Mater. Trans., 2006, 37A: 833
69 Zhang M X, Kelly P M. Edge-to-edge matching and its applications: Part II. Application to Mg-Al, Mg-Y and Mg-Mn alloys [J]. Acta Mater., 2005, 53: 1085
70 Wang Y X, Zeng X Q, Ding W J. Effect of Al-4Ti-5B master alloy on the grain refinement of AZ31 magnesium alloy [J]. Scr. Mater., 2006, 54: 269
71 Qian M, Stjohn D H. Grain nucleation and formation in Mg-Zr alloys [J]. Int. J. Cast Met. Res., 2009, 22: 256
72 Qiu D, Zhang M X, Taylor J A, et al. A new approach to designing a grain refiner for Mg casting alloys and its use in Mg-Y-based alloys [J]. Acta Mater., 2009, 57: 3052
73 Fu H M, Zhang M X, Qiu D, et al. Grain refinement by AlN particles in Mg-Al based alloys [J]. J. Alloys Compd., 2009, 478: 809
74 Shahzad M, Janeček M, Wagner L. Effects of prior homogenization treatments on microstructure development and mechanical properties of the extruded wrought magnesium alloy ZK60 [J]. Int. J. Mater. Res., 2009, 100: 370
75 Zhi Y, Hong X, Hu H J, et al. Improving the corrosion resistance of the AZ61 magnesium alloy with a homogenization treatment before the extrusion-shear process [J]. Mater. Technol., 2018, 52: 803
76 Peng J, Pan F S, Zhou M, et al. Effects of homogenization on the formability of ZM21 alloy [J]. Mater. Sci. Forum, 2007, 546-549: 355
77 Pan F S, Peng J, Ding P D, et al. The process to increase the plasticity of magnesium alloy profile [P]. Chin Pat, 200810069376.2, 2008
潘复生, 彭 建, 丁培道等. 提高镁合金型材塑性的热挤压生产工艺 [P]. 中国专利, 200810069376.2, 2008)
78 Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020 [J]. J. Magnes. Alloy., 2021, 9: 705
79 Hu L, Lv H Y, Shi L X, et al. Research on deformation mechanism of AZ31 magnesium alloy sheet with non-basal texture during uniaxial tension at room temperature: A visco-plastic self-consistent analysis [J]. J. Magnes. Alloy., doi: 10.1016/j.jma.2020.12.008
80 Wang Y P, Li F, Wang Y, et al. Effect of extrusion ratio on the microstructure and texture evolution of AZ31 magnesium alloy by the staggered extrusion (SE) [J]. J. Magnes. Alloy., 2020, 8: 1304
81 Sułkowski B, Janoska M, Boczkal G, et al. The effect of severe plastic deformation on the Mg properties after CEC deformation [J]. J. Magnes. Alloy., 2020, 8: 761
82 Meng Y Z, Yu J M, Zhang G S, et al. Effect of circumferential strain rate on dynamic recrystallization and texture of Mg-13Gd-4Y-2Zn-0.5Zr alloy during rotary backward extrusion [J]. J. Magnes. Alloy., 2020, 8: 1228
83 Zhao C Y, Li Z Y, Shi J H, et al. Strain hardening behavior of Mg-Y alloys after extrusion process [J]. J. Magnes. Alloy., 2019, 7: 672
84 Zhao L Y, Xin Y C, Jin Z Y, et al. Thermal stability of different texture components in extruded Mg-3Al-1Zn alloy [J]. J. Magnes. Alloy., 2019, 7: 577
85 Zhao Y T, Chang L L, Guo J, et al. Twinning behavior of hot extruded AZ31 hexagonal prisms during uniaxial compression [J]. J. Magnes. Alloy., 2019, 7: 90
86 Zhong L P, Wang Y J, Dou Y C. On the improved tensile strength and ductility of Mg-Sn-Zn-Mn alloy processed by aging prior to extrusion [J]. J. Magnes. Alloy., 2019, 7: 637
87 Xu B Q, Sun J P, Yang Z Q, et al. Microstructure and anisotropic mechanical behavior of the high-strength and ductility AZ91 Mg alloy processed by hot extrusion and multi-pass RD-ECAP [J]. Mater. Sci. Eng., 2020, A780: 139191
88 Yan Z M, Li X B, Zheng J, et al. Microstructure evolution, texture and mechanical properties of a Mg-Gd-Y-Zn-Zr alloy fabricated by cyclic expansion extrusion with an asymmetrical extrusion cavity: The influence of passes and processing route [J]. J. Magnes. Alloy., 2021, 9: 964
89 Shan Z H, Yang J, Fan J F, et al. Extraordinary mechanical properties of AZ61 alloy processed by ECAP with 160° channel angle and EPT [J]. J. Magnes. Alloy., 2021, 9: 548
90 Zhao X, Li S C, Zhang Z M, et al. Comparisons of microstructure homogeneity, texture and mechanical properties of AZ80 magnesium alloy fabricated by annular channel angular extrusion and backward extrusion [J]. J. Magnes. Alloy., 2020, 8: 624
91 Xu Q, Ma A B, Li Y H, et al. Microstructure evolution of AZ91 alloy processed by a combination method of equal channel angular pressing and rolling [J]. J. Magnes. Alloy., 2020, 8: 192
92 Huang H, Liu H, Wang C, et al. Potential of multi-pass ECAP on improving the mechanical properties of a high-calcium-content Mg-Al-Ca-Mn alloy [J]. J. Magnes. Alloy., 2019, 7: 617
93 Yan K, Liu H, Feng N, et al. Preparation of a single-phase Mg-6Zn alloy via ECAP-stimulated solution treatment [J]. J. Magnes. Alloy., 2019, 7: 305
94 Suh J, Victoria-Hernandez J, Letzig D, et al. Improvement in cold formability of AZ31 magnesium alloy sheets processed by equal channel angular pressing [J]. J. Mater. Process. Technol., 2015, 217: 286
95 Yang Q S, Jiang B, He J J, et al. Tailoring texture and refining grain of magnesium alloy by differential speed extrusion process [J]. Mater. Sci. Eng., 2014, A612: 187
96 Yang Q S, Jiang B, Pan H C, et al. Influence of different extrusion processes on mechanical properties of magnesium alloy [J]. J. Magnes. Alloy., 2014, 2: 220
97 Yang Q S, Jiang B, Tian Y, et al. A tilted weak texture processed by an asymmetric extrusion for magnesium alloy sheets [J]. Mater. Lett., 2013, 100: 29
98 Yang Q S, Jiang B, Zhou G Y, et al. Influence of an asymmetric shear deformation on microstructure evolution and mechanical behavior of AZ31 magnesium alloy sheet [J]. Mater. Sci. Eng., 2014, A590: 440
99 Xu J, Song J F, Jiang B, et al. Effect of effective strain gradient on texture and mechanical properties of Mg-3Al-1Zn alloy sheets produced by asymmetric extrusion [J]. Mater. Sci. Eng., 2017, A706: 172
100 Xu J, Yang T H, Jiang B, et al. Improved mechanical properties of Mg-3Al-1Zn alloy sheets by optimizing the extrusion die angles: Microstructural and texture evolution [J]. J. Alloys Compd., 2018, 762: 719
101 Xu J, Jiang B, Song J F, et al. Unusual texture formation in Mg-3Al-1Zn alloy sheets processed by slope extrusion [J]. Mater. Sci. Eng., 2018, A732: 1
102 Wang Q H, Song J F, Jiang B, et al. An investigation on microstructure, texture and formability of AZ31 sheet processed by asymmetric porthole die extrusion [J]. Mater. Sci. Eng., 2018, A720: 85
103 Zhu Z A, Shi R H, Klarner A D, et al. Predicting and controlling interfacial microstructure of magnesium/aluminum bimetallic structures for improved interfacial bonding [J]. J. Magnes. Alloy., 2020, 8: 578
104 Sheng K, Lu L W, Xiang Y, et al. Crack behavior in Mg/Al alloy thin sheet during hot compound extrusion [J]. J. Magnes. Alloy., 2019, 7: 717
105 He J J, Jiang B, Xie H M, et al. Improved tension-compression performance of Mg-Al-Zn alloy processed by co-extrusion [J]. Mater. Sci. Eng., 2016, A675: 76
106 Wang Q H, Shen Y Q, Jiang B, et al. Enhanced stretch formability at room temperature for Mg-Al-Zn/Mg-Y laminated composite via porthole die extrusion [J]. Mater. Sci. Eng., 2018, A731: 184
107 Wu Y, Feng B, Xin Y C, et al. Microstructure and mechanical behavior of a Mg AZ31/Al 7050 laminate composite fabricated by extrusion [J]. Mater. Sci. Eng., 2015, A640: 454
108 Chai Y F, Song Y, Jiang B, et al. Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets [J]. J. Magnes. Alloy., 2019, 7: 545
109 Tang J W, Chen L, Zhao G Q, et al. Study on Al/Mg/Al sheet fabricated by combination of porthole die co-extrusion and subsequent hot rolling [J]. J. Alloys Compd., 2019, 784: 727
110 Huang D N, Wu N, Dong R F, et al. Optimization of extrusion mold structure for AZ91D magnesium alloy radiator profiles [J]. Forg. Stamp. Technol., 2019, 44(10): 131
黄东男, 吴 南, 董瑞峰等. AZ91D镁合金散热器型材挤压模具结构优化 [J]. 锻压技术, 2019, 44(10): 131
111 Dao C H, Li Q W. Numerical simulation of extrusion process of magnesium alloy profile and die optimization design [J]. Hot Work. Technol., 2018, 47(11): 170
代昌浩, 李强武. 镁合金型材挤压过程数值模拟及模具优化设计 [J]. 热加工工艺, 2018, 47(11): 170
112 Bai S W, Fang G, Zhou J. Investigation into the extrudability of a new Mg-Al-Zn-RE alloy with large amounts of alloying elements [J]. Metall. Mater. Trans., 2019, 50A: 3246
113 Bai S W, Fang G, Zhou J. Construction of three-dimensional extrusion limit diagram for magnesium alloy using artificial neural network and its validation [J]. J. Mater. Process. Technol., 2020, 275: 116361
114 Bai S W, Fang G, Zhou J. Integrated physical and numerical simulations of weld seam formation during extrusion of magnesium alloy [J]. J. Mater. Process. Technol., 2019, 266: 82
115 Bai S W, Fang G. Experimental and numerical investigation into rectangular tube extrusion of high-strength magnesium alloy [J]. Int. J. Lightweight Mater. Manuf., 2020, 3: 136
116 Wang J F, Peng X, Wang K, et al. Numerical simulation and experimental study on extrusion forming of ultra-large size wide thin-walled hollow magnesium alloy profiles [J]. Chin. J. Nonferrous Met., 2020, 30: 2809
王敬丰, 彭 星, 王 奎等. 超大规格宽幅薄壁中空镁合金型材挤压成形的数值模拟及实验研究 [J]. 中国有色金属学报, 2020, 30: 2809
117 Hu H J, Ying Y L, Ou Z W, et al. Comparisons of microstructures and texture and mechanical properties of magnesium alloy fabricated by compound extrusion and direct extrusion [J]. Mater. Sci. Eng., 2017, A695: 360
118 Feng J K, Zhang D F, Hu H J, et al. Improved microstructures of AZ31 magnesium alloy by semi-solid extrusion [J]. Mater. Sci. Eng., 2021, A800: 140204
119 Hu H J, Qin X, Zhang D F, et al. A novel severe plastic deformation method for manufacturing AZ31 magnesium alloy tube [J]. Int. J. Adv. Manuf. Technol., 2018, 98: 897
120 Hu H J, Hong X, Tian Y, et al. AZ31 magnesium alloy tube manufactured by composite forming technology including extruded-shear and bending based on finite element numerical simulation and experiments [J]. Int. J. Adv. Manuf. Technol., 2021, 115: 2395
121 Zhang S Y, Wang C, Ning H, et al. Relieving segregation in twin-roll cast Mg-8Al-2Sn-1Zn alloys via controlled rolling [J]. J. Magnes. Alloy., 2021, 9: 254
122 Javaid A, Czerwinski F. Effect of hot rolling on microstructure and properties of the ZEK100 alloy [J]. J. Magnes. Alloy., 2019, 7: 27
123 Lee J H, Kwak B J, Kong T, et al. Improved tensile properties of AZ31 Mg alloy subjected to various caliber-rolling strains [J]. J. Magnes. Alloy., 2019, 7: 381
124 Sadeghi A, Mortezapour H, Samei J, et al. Anisotropy of mechanical properties and crystallographic texture in hot rolled AZ31+XSr sheets [J]. J. Magnes. Alloy., 2019, 7: 466
125 Pang L H, Xu C, Chen Q Z. Effect of differential speed rolling on the microstructure and texture of AZ31 magnesium alloy sheets [J]. Shanghai Met., 2018, 40(6): 79
庞灵欢, 徐 春, 陈麒忠. 异速轧制对AZ31镁合金板组织与织构的影响 [J]. 上海金属, 2018, 40(6): 79
126 Majchrowicz K, Jóźwik P, Chromiński W, et al. Microstructure, texture and mechanical properties of Mg-6Sn alloy processed by differential speed rolling [J]. Materials, 2021, 14: 83
127 Song X D, Yuan G C, Li X H, et al. Microstructure and texture evolution of differential speed rolled Mg-3Zn-2(Ce/La)-1Mn alloy [J]. Heat Treat. Met., 2020, 45(2): 1
宋旭东, 袁鸽成, 黎小辉等. 异步轧制Mg-3Zn-2(Ce/La)-1Mn合金的微观组织及织构演变 [J]. 金属热处理, 2020, 45(2): 1
128 Zhang H L, Xu Z G, Yarmolenko S, et al. Evolution of microstructure and mechanical properties of Mg-6Al alloy processed by differential speed rolling upon post-annealing treatment [J]. Metals, 2021, 11: 926
129 Li Y K, Zha M, Rong J, et al. Effect of large thickness-reduction on microstructure evolution and tensile properties of Mg-9Al-1Zn alloy processed by hard-plate rolling [J]. J. Mater. Sci. Technol., 2021, 88: 215
130 Li Y K, Zha M, Jia H L, et al. Tailoring bimodal grain structure of Mg-9Al-1Zn alloy for strength-ductility synergy: Co-regulating effect from coarse Al2Y and submicron Mg17Al12 particles [J]. J. Magnes. Alloy., 2021, 9: 1556
131 Wang H Y, Yu Z P, Zhang L, et al. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process [J]. Sci. Rep., 2015, 5: 17100
132 Li X L, Li X L, Zhou H T, et al. Simulation of dynamic recrystallization in AZ80 magnesium alloy using cellular automaton [J]. Comput. Mater. Sci., 2017, 140: 95
133 Zhang H, Wang H Y, Wang J G, et al. The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys [J]. J. Alloys Compd., 2019, 780: 312
134 Zhang H M, Cheng X M, Zha M, et al. A superplastic bimodal grain-structured Mg-9Al-1Zn alloy processed by short-process hard-plate rolling [J]. Materialia, 2019, 8: 100443
135 Wang H Y, Feng T T, Zhang L, et al. Achieving a weak basal texture in a Mg-6Al-3Sn alloy by wave-shaped die rolling [J]. Mater. Des., 2015, 88: 157
136 Wang C, Ning H, Liu S, et al. Enhanced ductility and strength of Mg-1Zn-1Sn-0.3Y-0.2Ca alloy achieved by novel micro-texture design [J]. Scr. Mater., 2021, 204: 114119
137 Zhu Y L, Liu F Y, Song B, et al. Coupling pre-aging treatment and side-rolling to improve the mechanical properties of AZ80 alloys [J]. Mater. Sci. Eng., 2020, A779: 139158
138 Xin Y C, Wang M Y, Zeng Z, et al. Tailoring the texture of magnesium alloy by twinning deformation to improve the rolling capability [J]. Scr. Mater., 2011, 64: 986
139 Zheng H P, Wu R Z, Hou L G, et al. Mathematical analysis and its experimental comparisons for the accumulative roll bonding (ARB) process with different superimposed layers [J]. J. Magnes. Alloy., 2021, 9: 1741
140 Lee T J, Kim W J. Microstructure and tensile properties of magnesium nanocomposites fabricated using magnesium chips and carbon black [J]. J. Magnes. Alloy., 2020, 8: 860
141 Wu Z H, Qi Z C, Xu P P, et al. Microstructure and bonding properties of hot-rolled 7075/AZ31B clad sheets [J]. Chin. J. Eng., 2020, 42: 620
吴宗河, 祁梓宸, 许朋朋等. 热轧7075/AZ31B复合板的显微组织及结合性能 [J]. 工程科学学报, 2020, 42: 620
142 Lv H Y, Song D H, Zhou T, et al. Effects of cyclic passes on micro-structure and properties of AZ31 magnesium alloy sheet rolled at high temperature [J]. J. Netshape Form. Eng., 2019, 11(3): 117
吕胡缘, 宋登辉, 周 涛等. 循环道次对高温叠轧AZ31镁合金板材组织与性能的影响 [J]. 精密成形工程, 2019, 11(3): 117
143 Huo P D, Li F, Wang Y, et al. Formability and interface structure of Al/Mg/Al composite sheet rolled by hard-plate rolling (HPR) [J]. Int. J. Adv. Manuf. Technol., doi: 10.1007/s00170-021-07178-0
144 Habila W, Azzeddine H, Mehdi B, et al. Investigation of microstructure and texture evolution of a Mg/Al laminated composite elaborated by accumulative roll bonding [J]. Mater. Charact., 2019, 147: 242
145 Tayyebi M, Rahmatabadi D, Adhami M, et al. Manufacturing of high-strength multilayered composite by accumulative roll bonding [J]. Mater. Res. Express, 2019, 6: 1265e6
146 Rahmatabadi D, Pahlavani M, Marzbanrad J, et al. Manufacturing of three-layered sandwich composite of AA1050/LZ91/AA1050 using cold roll bonding process [J]. Proc. Inst. Mech. Eng., 2021, 235B: 1363
147 Xiao B Q, Song J F, Zhao H, et al. Optimized tension for AZ31B thin sheets rolled with on-line heating rolling [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 227
148 Pan F S, Zeng B, Jiang B, et al. Enhanced mechanical properties of AZ31B magnesium alloy thin sheets processed by on-line heating rolling [J]. J. Alloys Compd., 2017, 693: 414
149 Pan F S, Zeng B, Jiang B, et al. Deformation mechanism and microstructure evolution during on-line heating rolling of AZ31B Mg thin sheets [J]. Mater. Charact., 2017, 124: 266
150 Xiao B Q, Song J F, Tang A T, et al. Effect of pass reduction on distribution of shear bands and mechanical properties of AZ31B alloy sheets prepared by on-line heating rolling [J]. J. Mater. Process. Technol., 2020, 280: 116611
151 Huang Y C, Xiao B Q, Song J F, et al. Effect of tension on edge crack of on-line heating rolled AZ31B magnesium alloy sheet [J]. J. Mater. Res. Technol., 2020, 9: 1988
152 Liu Q, Song J F, Pan F S, et al. The edge crack, texture evolution, and mechanical properties of Mg-1Al-1Sn-Mn alloy sheets prepared using on-line heating rolling [J]. Metals, 2018, 8: 860
153 Liu Q, Song J F, Zhao H, et al. Microstructure and mechanical properties of Mg-6Al-1Sn-Mn sheets prepared by on-line heating rolling [J]. J. Cent. South Univ. (Sci. Technol.), 2020, 51: 3159
刘 强, 宋江凤, 赵 华等. 在线加热轧制Mg-6Al-1Sn-Mn板材显微组织及力学性能 [J]. 中南大学学报(自然科学版), 2020, 51: 3159
154 Jia Y H, Hou J, Wang H, et al. Effects of an oscillation electromagnetic field on grain refinement and Al8Mn5 phase formation during direct-chill casting of AZ31B magnesium alloy [J]. J. Mater. Process. Technol., 2020, 278: 116542
155 Jia Y H, Chen X R, Le Q C, et al. Macro-physical field of large diameter magnesium alloy billet electromagnetic direct-chill casting: A comparative study [J]. J. Magnes. Alloy., 2020, 8: 716
156 Le Q C, Jia Y H, Chen X R, et al. A phase difference pulse magnetic field electromagnetic continuous casting method [P]. Chin Pat, 201810270280.6, 2018
乐启炽, 贾永辉, 陈星瑞等. 一种差相位脉冲磁场电磁连铸方法 [P]. 中国专利, 201810270280.6, 2018)
157 Le Q C, Hou J, Jia Y H, et al. Casting device and method of crack-free large size magnesium alloy billet [P]. Chin Pat, 201810303658.8, 2018
乐启炽, 侯 建, 贾永辉等. 无裂纹大规格镁合金扁锭的铸造装置及方法 [P]. 中国专利, 201810303658.8, 2018)
158 Ding Y P, Zhu Q, Le Q C, et al. Analysis of temperature distribution in the hot plate rolling of Mg alloy by experiment and finite element method [J]. J. Mater. Process. Technol., 2015, 225: 286
159 Jia W T, Tang Y, Le Q C, et al. Air-cooling analysis of AZ31B magnesium alloy plate: Experimental verification, numerical simulation and mathematical modeling [J]. J. Alloys Compd., 2017, 695: 1838
160 Jia W T, Le Q C. Heat-transfer analysis of AZ31B Mg alloys during single-pass flat rolling: Experimental verification and mathematical modeling [J]. Mater. Des., 2017, 121: 288
161 Ning F K, Jia W T, Hou J, et al. Construction of edge cracks pre-criterion model based on hot rolling experiment and simulation of AZ31 magnesium alloy [J]. Mater. Res. Express, 2018, 5: 056528
162 Ning F K, Zhou X, Le Q C, et al. Fracture and deformation characteristics of AZ31 magnesium alloy plate during tension rolling [J]. Mater. Today Commun., 2020, 24: 101129
163 Jia W T, Le Q C, Tang Y, et al. Role of pre-vertical compression in deformation behavior of Mg alloy AZ31B during super-high reduction hot rolling process [J]. J. Mater. Sci. Technol., 2018, 34: 2069
164 Jia W T, Ning F K, Ding Y P, et al. Role of pre-width reduction in deformation behavior of AZ31B alloy during break-down rolling and finish rolling [J]. Mater. Sci. Eng., 2018, A720: 11
165 Jia W T, Tang Y, Ning F K, et al. Optimum rolling speed and relevant temperature- and reduction-dependent interfacial friction behavior during the break-down rolling of AZ31B alloy [J]. J. Mater. Sci. Technol., 2018, 34: 2051
166 Du Y Z, Liu D J, Ge Y F, et al. Effects of deformation parameters on microstructure and texture of Mg-Zn-Ce alloy [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 2658
167 Sutton S C, Luo A A. Constitutive behavior and processing maps of a new wrought magnesium alloy ZE20 (Mg-2Zn-0.2Ce) [J]. J. Magnes. Alloy., 2020, 8: 111
168 Ding X F, Zhao F Q, Shuang Y H, et al. Characterization of hot deformation behavior of as-extruded AZ31 alloy through kinetic analysis and processing maps [J]. J. Mater. Process. Technol., 2020, 276: 116325
169 Ramesh S, Anne G, Nayaka H S, et al. Investigation of dry sliding wear properties of multi-directional forged Mg-Zn alloys [J]. J. Magnes. Alloy., 2019, 7: 444
170 Hao M J, Cheng W L, Wang L F, et al. Texture evolution induced by twinning and dynamic recrystallization in dilute Mg-1Sn-1Zn-1Al alloy during hot compression [J]. J. Magnes. Alloy., 2020, 8: 899
171 Lim S C V, Yong M S. Plane-strain forging of wrought magnesium alloy AZ31 [J]. J. Mater. Process. Technol., 2006, 171: 393
172 Ogawa N, Shiomi M, Osakada K. Forming limit of magnesium alloy at elevated temperatures for precision forging [J]. Int. J. Mach. Tools Manuf., 2002, 42: 607
173 Kang Y H, Huang Z H, Zhao H, et al. Comparative study of hot deformation behavior and microstructure evolution of as-cast and extruded WE43 magnesium alloy [J]. Metals, 2020, 10: 429
174 Najafi S, Mahmudi R. Enhanced microstructural stability and mechanical properties of the Ag-containing Mg-Gd-Y alloys [J]. J. Magnes. Alloy., 2020, 8: 1109
175 You C, Liu C M, Wan Y C, et al. Dislocations-induced precipitates and their effect on mechanical properties of Mg-Gd-Y-Zr alloy [J]. J. Magnes. Alloy., 2019, 7: 414
176 Kang Y H, Huang Z H, Wang S C, et al. Effect of pre-deformation on microstructure and mechanical properties of WE43 magnesium alloy II: Aging at 250 and 300oC [J]. J. Magnes. Alloy., 2020, 8: 103
177 Madaj M, Greger M, Karas V. Magnesium-alloy die forgings for automotive applications [J]. Mater. Technol., 2015, 49: 267
178 Behrens B A, Schmidt I. Improving the properties of forged magnesium parts by optimized process parameters [J]. J. Mater. Process. Technol., 2007, 187-188: 761
179 Graf M, Ullmann M, Kawalla R. Influence of initial state on forgeability and microstructure development of magnesium alloys [J]. Procedia Eng., 2014, 81: 546
180 Chino Y, Mabuchi M, Shimojima K, et al. Forging characteristics of AZ31 Mg alloy [J]. Mater. Trans., 2001, 42: 414
181 Henry D, Turski M, Lyon P, et al. An introduction to the forging of elektron®43—A high performance wrought magnesium alloy [A]. Magnesium Technology 2014 [C]. Springer International Publishing, 2016: 281
182 Panigrahi S K, Yuan W, Mishra R S, et al. A study on the combined effect of forging and aging in Mg-Y-RE alloy [J]. Mater. Sci. Eng., 2011, A530: 28
183 Asqardoust S, Zarei-Hanzaki A, Fatemi S M, et al. High temperature deformation behavior and microstructural evolutions of a high Zr containing WE magnesium alloy [J]. J. Alloys Compd., 2016, 669: 108
184 Matsumoto R, Kubo T, Osakada K. Fracture of magnesium alloy in cold forging [J]. CIRP Ann., 2007, 56: 293
185 Matsumoto R, Osakada K. Ductility of a magnesium alloy in warm forging with controlled forming speed using a CNC servo press [J]. J. Mater. Process. Technol., 2010, 210: 2029
186 Zhu S Q, Yan H G, Chen J H, et al. Effect of twinning and dynamic recrystallization on the high strain rate rolling process [J]. Scr. Mater., 2010, 63: 985
187 Wang Q, Zhang Z M, Yu J M, et al. A mould for back extrusion of hollow blank to form hollow parts [P]. Chin Pat, 201710516964.5, 2017
王 强, 张治民, 于建民等. 一种用于空心坯料反挤压成形空心件的模具 [P]. 中国专利, 201710516964.5, 2017)
188 Geng L Y, Wang Q, Yang Y B, et al. Microstructure and mechanical properties of AZ80 magnesium alloy wheel hubs produced by extrusion process using hollow billet [J]. Ordnance Mater. Sci. Eng., 2018, 41(2): 11
耿立业, 王 强, 杨勇彪等. 基于空心坯料挤压AZ80镁合金轮毂组织与性能研究 [J]. 兵器材料科学与工程, 2018, 41(2): 11
189 Zeng J, Wang F H, Wei X X, et al. A new constitutive model for thermal deformation of magnesium alloys [J]. Metall. Mater. Trans., 2020, 51A: 497
190 Zeng J, Wang F H, Dong S, et al. A new dynamic recrystallization kinetics model of cast-homogenized magnesium alloys [J]. Metall. Mater. Trans., 2021, 52A: 316
191 Zeng J, Wang F H, Dong S, et al. Optimization of hot backward extrusion process parameters for flat bottom cylindrical parts of Mg-8Gd-3Y alloy based on 3D processing maps [J]. Int. J. Adv. Manuf. Technol., 2020, 108: 2149
192 Wang F H, Ni J M, Zeng J, et al. A positive and negative extrusion mould and forming method [P]. Chin Pat, 202011280551.X, 2020
王锋华, 倪加明, 曾 健等. 一种正反挤压成形模具及成形方法 [P]. 中国专利, 202011280551.X, 2020)
193 Quan G F, Liu S D. Application research on Mg alloy wheel hub prepared by super-plastic die forging [J]. Ordnance Mater. Sci. Eng., 2012, 35(4): 22
权高峰, 刘绍东. 超塑性模锻镁合金汽车轮毂应用研究 [J]. 兵器材料科学与工程, 2012, 35(4): 22
194 Wang Q, Zhang Z M. Investigation on backward extrusion of hollow billet with force saving [J]. J. Plast. Eng., 2010, 17(3): 22
王 强, 张治民. 空心坯料反挤压省力成形方法及应用研究 [J]. 塑性工程学报, 2010, 17(3): 22
195 Wang Q, Zhang Z M, Zhang X, et al. New extrusion process of Mg alloy automobile wheels [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: s599
196 Wang Q, Zhang Z M, Zhang X, et al. Precision forging technologies for magnesium alloy bracket and wheel [J]. Trans. Nonferrous Met. Soc. China, 2008, 18: s205
197 Zhao X, Gao P C, Zhang Z M, et al. Fatigue characteristics of the extruded AZ80 automotive wheel [J]. Int. J. Fatigue, 2020, 132: 105393
198 Zhang H, Cui Z Z, Du Z H, et al. Isothermal forming of gyroscope-brackets by numerical simulation and experiment [J]. Aerosp. Mater. Technol., 2012, 42: 50
张 浩, 崔子振, 杜志惠等. 高强耐热镁合金陀螺仪支架精密锻造工艺 [J]. 宇航材料工艺, 2012, 42(1): 50
199 Han X Z, Shan D B, Xu W C, et al. Isothermal precision forging process of Mg-RE alloy component With high-tib and thin-web [J]. Aerosp. Mater. Technol., 2013, 43(3): 60
韩修柱, 单德彬, 徐文臣等. 高强韧稀土镁合金筋板类构件等温精锻工艺 [J]. 宇航材料工艺, 2013, 43(3): 60
200 Xu W C, Shan D B, Guo B, et al. Isothermal forging rare element containing magnesium alloy bracket with thin web and high rib [J]. J. Plast. Eng., 2014, 21(2): 7
徐文臣, 单德彬, 郭 斌等. 稀土镁合金薄腹高筋支架的等温锻造技术 [J]. 塑性工程学报, 2014, 21(2): 7
201 Li L, Liu J C. Isothermal forming of EW94 magnesium alloy thin-walled cone tube by the combination of forging and extrusion and its microstructure and properties [J]. J. Plast. Eng., 2013, 20(5): 6
李 理, 刘建才. 等温锻-挤复合成形EW94镁合金薄壁锥管及其微结构与性能 [J]. 塑性工程学报, 2013, 20(5): 6
202 Miura H, Yu G, Yang X. Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties [J]. Mater. Sci. Eng., 2011, A528: 6981
203 Wu Y Z, Yan H G, Chen J H, et al. Microstructure and mechanical properties of ZK21 magnesium alloy fabricated by multiple forging at different strain rates [J]. Mater. Sci. Eng., 2012, A556: 164
204 Zhang J, Huang H. Microstructure and mechanical properties of AZ31 alloy ring processed by hot forging [J]. Mater. Sci. Technol., 2016, 32: 1043
205 Zhang J, Huang H, Yang C B. Effects of hot ring forging on microstructure, texture and mechanical properties of AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2017, A679: 20
206 He C, Jiang B, Wang Q H, et al. Effect of precompression and subsequent annealing on the texture evolution and bendability of Mg-Gd binary alloy [J]. Mater. Sci. Eng., 2021, A799: 140290
207 He J J, Jiang B, Xu J, et al. Effect of texture symmetry on mechanical performance and corrosion resistance of magnesium alloy sheet [J]. J. Alloys Compd., 2017, 723: 213
208 He J J, Jiang B, Yang Q S, et al. Influence of pre-hardening on microstructure evolution and mechanical behavior of AZ31 magnesium alloy sheet [J]. J. Alloys Compd., 2015, 621: 301
209 He J J, Jiang B, Yang Q, et al. Improved the anisotropy of extruded Mg-3Li-3Al-Zn alloy sheet by presetting grain re-orientation and subsequent annealing [J]. J. Alloys Compd., 2016, 676: 64
210 He J J, Jiang B, Zhang J Y, et al. Enhancement of mechanical properties and corrosion resistance of magnesium alloy sheet by pre-straining and annealing [J]. Mater. Sci. Eng., 2015, A647: 216
211 He J J, Mao Y, Fu Y J, et al. Improving the room-temperature formability of Mg-3Al-1Zn alloy sheet by introducing an orthogonal four-peak texture [J]. J. Alloys Compd., 2019, 797: 443
212 He J J, Mao Y, Gao Y P, et al. Effect of rolling paths and pass reductions on the microstructure and texture evolutions of AZ31 sheet with an initial asymmetrical texture distribution [J]. J. Alloys Compd., 2019, 786: 394
213 He J J, Mao Y, Lu S L, et al. Texture optimization on Mg sheets by preparing soft orientations of extension twinning for rolling [J]. Mater. Sci. Eng., 2019, A760: 174
214 He W J, Zeng Q H, Yu H H, et al. Improving the room temperature stretch formability of a Mg alloy thin sheet by pre-twinning [J]. Mater. Sci. Eng., 2016, A655: 1
215 Lee J U, Kim Y J, Kim S H, et al. Texture tailoring and bendability improvement of rolled AZ31 alloy using {101¯2} twinning: The effect of precompression levels [J]. J. Magnes. Alloy., 2019, 7: 648
216 Huang G S, Li H C, Song B, et al. Tensile properties and microstructure of AZ31B magnesium alloy sheet processed by repeated unidirectional bending [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 28
217 Huang G S, Xu W, Huang G J, et al. Textural evolution of AZ31B magnesium alloy sheets undergoing repeated unidirectional bending at room temperature [J]. J. Mater. Sci. Technol., 2009, 25: 365
218 Bo S, Huang G S, Li H C, et al. Texture evolution and mechanical properties of AZ31B magnesium alloy sheets processed by repeated unidirectional bending [J]. J. Alloys Compd., 2010, 489: 475
219 Huang G S, Song B, Xu W, et al. Structure and properties of AZ31B magnesium alloy sheets processed by repeatedly unidirectional bending at different temperatures [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1815
220 Zhang L, Huang G S, Zhang H, et al. Cold stamping formability of AZ31B magnesium alloy sheet undergoing repeated unidirectional bending process [J]. J. Mater. Process. Technol., 2011, 211: 644
221 Zhang H, Huang G S, Kong D Q, et al. Influence of initial texture on formability of AZ31B magnesium alloy sheets at different temperatures [J]. J. Mater. Process. Technol., 2011, 211: 1575
222 Huang G S, Zhang H, Gao X Y, et al. Forming limit of textured AZ31B magnesium alloy sheet at different temperatures [J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 836
223 Huang G S, Zhang L, Song B, et al. Cold stamping for AZ31B magnesium alloy sheet of cell phone house [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: s608
224 Han T Z, Huang G S, Wang Y G, et al Enhanced mechanical properties of AZ31magnesium alloy sheets by continuous bending process after V-bending [J]. Prog. Nat. Sci. Mater. Int., 2016, 26: 97
225 Han T Z, Huang G S, Wang Y G, et al. Microstructure and formability evolutions of AZ31 magnesium alloy sheets undergoing continuous bending process [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 2043
226 Han T Z, Huang G S, Huang L, et al. Influence of continuous bending process on texture evolution and mechanical properties of AZ31 magnesium alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 225
[1] XIONG Tianying, WANG Jiqiang. Research Progress of Cold Spray in Institute of Metal Research, Chinese Academy of Sciences[J]. 金属学报, 2023, 59(4): 537-546.
[2] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[3] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[4] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[5] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[7] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[8] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[9] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[10] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[11] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[12] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[13] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
[14] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[15] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
No Suggested Reading articles found!