Development and Application of Plastic Processing Technologies of Magnesium Alloys
PAN Fusheng1,2, JIANG Bin1,2()
1.National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China 2.Collegue of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
Cite this article:
PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys. Acta Metall Sin, 2021, 57(11): 1362-1379.
China has the most abundant magnesium resources in the world. Magnesium and its alloys have the advantages of low density, high specific strength, good damping property, and exceptional electromagnetic-shielding and energy-storage characteristics. They are one of the most promising lightweight materials. The enhanced applications of magnesium alloys can save energy and reduce emissions and are significant to the new Chinese energy strategy. However, magnesium alloys have a hexagonal close-packed structure and exhibit relatively low ductility. A bottleneck in expanding the application of magnesium alloys is improving the ductility of magnesium alloys. For more than ten years, efforts have been made to improve the ductility and plastic deformation ability. Progress has been made in plastic-processing technologies of magnesium alloys. The novel alloy design theory “solid solution strengthening and ductilizing” and advanced preparation technologies such as “melt self-purification through varying temperature” have been established. Series of new magnesium alloys with good ductility and corresponding alloy grades have been developed, where the impurity content of iron can be reduced to below 10 × 10-6; the elongation was more than 60% for ultrahigh plasticity magnesium alloys and is above 10% for the ultrahigh-strength magnesium alloys (UTS > 550 MPa). New plastic-processing technologies, such as asymmetric extrusion, asymmetric rolling, asymmetric modification, cyclical multipass upsetting and squeezing, expansion control large ratio forging, and extrusion and forging composite forming, have been developed. These newly developed magnesium alloys and processing technologies weaken the basal texture in wrought magnesium alloys, improving the formability of sheets, tubes, profiles, and forgings and their product quality and reducing their product cost. These technologies have been successfully applied in the processing of magnesium sheets, pipe profiles, and forgings.
Fig.1 Solid solution strengthening and ductilizing to design new Mg alloys (Δτ, Δτ'—difference of sliding resistance) (a-h)[47]
Element
Solubility in Mg
(atomic fraction / %)
ΔτCRSS at the most solubility
MPa
ΔτCRSS at 1% (atomic fraction) solubility / MPa
Gd
4.53
23.22
10.91
Ca
0.41
6.85
10.71
Yb
1.2
11.15
10.18
Mn
0.996
10.13
10.15
Y
3.4
16.71
9.06
Dy
4.83
18.89
8.6
Er
6.9
19.05
7.25
Si
1.16
4.75
4.41
Ag
3.83
8.54
4.37
Zn
2.69
5.23
3.19
Sb
0
0
2.37
Al
11.5
7.08
2.09
Sc
15
6.11
1.58
Ti
0.12
0.49
1.41
Sn
3.35
2.34
1.28
Li
17
4.8
1.17
Zr
1.04
1
0.98
Fe
0.00043
0.24
-
Table 1 Basal CRSS changes of Mg with different solutes[47]
Fig.2 Equipment of online heating rolling (a) and its schematic diagram (b)[147,148]
Fig.3 Continuous bending experiment (V—velocity of sheet, T—pull force, θ—bending angle of sheet)[224,225]
Fig.4 Wide sheet of AZ31 magnesium alloy (The width is 1.5-2.2 m)
Fig.5 Wide profile (width is 502 mm) (a) and large circular component (diameter is 3.49 m) (b)
1
Zhang J Y, Jian Y X, Zhao X Z, et al. The tribological behavior of a surface-nanocrystallized magnesium alloy AZ31 sheet after ultrasonic shot peening treatment [J]. J. Magnes. Alloy., 2021, 9: 1187
2
Zhang C Y, Zhang S Y, Sun D W, et al. Superhydrophobic fluoride conversion coating on bioresorbable magnesium alloy—Fabrication, characterization, degradation and cytocompatibility with BMSCs [J]. J. Magnes. Alloy., 2021, 9: 1246
3
Wu T C, Joshi S S, Ho Y H, et al. Microstructure and surface texture driven improvement in in-vitro response of laser surface processed AZ31B magnesium alloy [J]. J. Magnes. Alloy., 2021, 9: 1406
4
Motlagh E B, Lynch P A, Dorin T, et al. X-ray analysis of twin dominated deformation in an aged Mg-7Sn-3Zn-0.04Na alloy [J]. J. Magnes. Alloy., 2021, 9: 1201
5
Marzbanrad B, Razmpoosh M H, Toyserkani E, et al. Role of heat balance on the microstructure evolution of cold spray coated AZ31B with AA7075 [J]. J. Magnes. Alloy., 2021, 9: 1458
6
Liao H B, Zhan M Y, Li C B, et al. Grain refinement of Mg-Al alloys inoculated by MgAl2O4 powder [J]. J. Magnes. Alloy., 2021, 9: 1211
7
Yu H, Fan S D, Meng S J, et al. Microstructural evolution and mechanical properties of binary Mg-xBi (x = 2, 5, and 8 wt%) alloys [J]. J. Magnes. Alloy., 2021, 9: 983
8
Shi Z Z, Chen H T, Zhang K, et al. Crystallography of precipitates in Mg alloys [J]. J. Magnes. Alloy., 2021, 9: 416
9
Rekab-Djabri H, Salam M M A, Daoud S, et al. Ground state parameters, electronic properties and elastic constants of CaMg3: DFT study [J]. J. Magnes. Alloy., 2020, 8: 1166
10
Medina J, Garces G, Pérez P, et al. High temperature mechanical behaviour of Mg-6Zn-1Y alloy with 1wt. % calcium addition: Reinforcing effect due to I-(Mg3Zn6Y1) and Mg6Zn3Ca2 phases [J]. J. Magnes. Alloy., 2020, 8: 1047
11
Kim Y J, Lee J U, Kim Y M, et al. Microstructural evolution and grain growth mechanism of pre-twinned magnesium alloy during annealing [J]. J. Magnes. Alloy., 2021, 9: 1233
12
Fu J L, Du W B, Jia L Y, et al. Cooling rate controlled basal precipitates and age hardening response of solid-soluted Mg-Gd-Er-Zn-Zr alloy [J]. J. Magnes. Alloy., 2021, 9: 1261
13
Ding C, Hu X S, Shi H L, et al. Development and strengthening mechanisms of a hybrid CNTs@SiCp/Mg-6Zn composite fabricated by a novel method [J]. J. Magnes. Alloy., 2021, 9: 1363
14
Cui X J, Ning C M, Zhang G A, et al. Properties of polydimethylsiloxane hydrophobic modified duplex microarc oxidation/diamond-like carbon coatings on AZ31B Mg alloy [J]. J. Magnes. Alloy., 2021, 9: 1285
15
Li X Q, Ren L, Le Q C, et al. Reducing the yield asymmetry in Mg-5Li-3Al-2Zn alloy by hot-extrusion and multi-pass rolling [J]. J. Magnes. Alloy., 2021, 9: 937
16
Lv B J, Wang S, Xu T W, et al. Effects of minor Nd and Er additions on the precipitation evolution and dynamic recrystallization behavior of Mg-6.0Zn-0.5 Mn alloy [J]. J. Magnes. Alloy., 2021, 9: 840
17
Liu C Q, Chen X H, Chen J, et al. The effects of Ca and Mn on the microstructure, texture and mechanical properties of Mg-4Zn alloy [J]. J. Magnes. Alloy., 2021, 9: 1084
18
Silva E P, Buzolin R H, Marques F, et al. Effect of Ce-base mischmetal addition on the microstructure and mechanical properties of hot-rolled ZK60 alloy [J]. J. Magnes. Alloy., 2021, 9: 995
19
Sun B Z, Zhang H X, Dong Y, et al. Rotational and translational domains of beta precipitate in aged binary Mg-Ce alloys [J]. J. Magnes. Alloy., 2021, 9: 1039
20
Wang C, Luo T J, Liu Y T, et al. Residual stress and precipitation of Mg-5Zn-3.5Sn-1Mn-0.5Ca-0.5Cu alloy with different quenching rates [J]. J. Magnes. Alloy., 2021, 9: 604
21
Tang W Q, Lee J Y, Wang H M, et al. Unloading behaviors of the rare-earth magnesium alloy ZE10 sheet [J]. J. Magnes. Alloy., 2021, 9: 927
22
Tong L B, Chu J H, Sun W T, et al. Development of a high-strength Mg alloy with superior ductility through a unique texture modification from equal channel angular pressing [J]. J. Magnes. Alloy., 2021, 9: 1007
23
Zhao L Y, Yan H, Chen R S, et al. The preferential growth and related textural evolution during static recrystallization in a cold-rolled Mg-Zn-Gd alloy [J]. J. Magnes. Alloy., 2021, 9: 818
24
Balasubramani N, Wang G, Easton M A, et al. A comparative study of the role of solute, potent particles and ultrasonic treatment during solidification of pure Mg, Mg-Zn and Mg-Zr alloys [J]. J. Magnes. Alloy., 2021, 9: 829
25
Guan K, Ma R, Zhang J H, et al. Modifying microstructures and tensile properties of Mg-Sm based alloy via extrusion ratio [J]. J. Magnes. Alloy., 2021, 9: 1098
26
Chapuis A, Liu Q. Modeling strain rate sensitivity and high temperature deformation of Mg-3Al-1Zn alloy [J]. J. Magnes. Alloy., 2019, 7: 433
27
Dobroň P, Drozdenko D, Fekete K, et al. The slip activity during the transition from elastic to plastic tensile deformation of the Mg-Al-Mn sheet [J]. J. Magnes. Alloy., 2021, 9: 1057
28
Gui Y W, Ouyang L X, Cui Y J, et al. Grain refinement and weak-textured structures based on the dynamic recrystallization of Mg-9.80Gd-3.78Y-1.12Sm-0.48Zr alloy [J]. J. Magnes. Alloy., 2021, 9: 456
29
Hwang J H, Zargaran A, Park G, et al. Effect of 1Al addition on deformation behavior of Mg [J]. J. Magnes. Alloy., 2021, 9: 489
30
Liu Y X, Li Y X, Zhu Q C, et al. Twin recrystallization mechanisms in a high strain rate compressed Mg-Zn alloy [J]. J. Magnes. Alloy., 2021, 9: 499
31
Cheng Q, Chen L, Tang J W, et al. A comprehensive analysis on microstructure evolution of Mg-5.65Zn-0.66Zr alloy during hot deformation [J]. J. Magnes. Alloy., 2021, 9: 520
32
Tang W R, Liu Z, Liu S M, et al. Deformation mechanism of fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy under high temperature and high strain rates [J]. J. Magnes. Alloy., 2020, 8: 1144
33
Abouhilou F, Hanna A, Azzeddine H, et al. Microstructure and texture evolution of AZ31 Mg alloy after uniaxial compression and annealing [J]. J. Magnes. Alloy., 2019, 7: 124
34
Wan X, Zhang J, Mo X Y, et al. 3D atomic-scale growth characteristics of {101¯2} twin in magnesium [J]. J. Magnes. Alloy., 2019, 7: 474
35
Varma R, Kada S, Barnett M. Effect of plastic deformation on microstructure and thermoelectric properties of Mg2Sn alloys [J]. J. Magnes. Alloy., 2021, 9: 123
36
Zhang Y, Jiang H T, Kang Q, et al. Microstructure evolution and mechanical property of Mg-3Al alloys with addition of Ca and Gd during rolling and annealing process [J]. J. Magnes. Alloy., 2020, 8: 769
37
Sheng L Y, Du B N, Hu Z Y, et al. Effects of annealing treatment on microstructure and tensile behavior of the Mg-Zn-Y-Nd alloy [J]. J. Magnes. Alloy., 2020, 8: 601
38
Lee S W, Kim S H, Park S H. Microstructural characteristics of AZ31 alloys rolled at room and cryogenic temperatures and their variation during annealing [J]. J. Magnes. Alloy., 2020, 8: 537
39
Kong T, Kwak B J, Kim J, et al. Tailoring strength-ductility balance of caliber-rolled AZ31 Mg alloy through subsequent annealing [J]. J. Magnes. Alloy., 2020, 8: 163
40
Zhang F, Liu Z, Wang Y, et al. The modified temperature term on Johnson-Cook constitutive model of AZ31 magnesium alloy with {0002} texture [J]. J. Magnes. Alloy., 2020, 8: 172
41
Yu J C, Song B, Xia D B, et al. Dynamic tensile properties and microstructural evolution of extruded EW75 magnesium alloy at high strain rates [J]. J. Magnes. Alloy., 2020, 8: 849
42
Xia X S, Zhang K, Ma M L, et al. Constitutive modeling of flow behavior and processing maps of Mg-8.1Gd-4.5Y-0.3Zr alloy [J]. J. Magnes. Alloy., 2020, 8: 917
43
Xu T C, Yang Y, Peng X D, et al. Overview of advancement and development trend on magnesium alloy [J]. J. Magnes. Alloy., 2019, 7: 536
44
Sriraman N, Kumaran S, Narayanan N S. Influence of thermomechanical processing on microstructure, mechanical and strain hardening properties of single-phase Mg-4Li-0.5Ca alloy for structural application [J]. J. Magnes. Alloy., 2020, 8: 1262
45
Islam R, Haghshenas M. Statistical optimization of stress level in Mg-Li-Al alloys upon hot compression testing [J]. J. Magnes. Alloy., 2019, 7: 203
46
Lian Y, Ji P E, Zhang J, et al. Effect of homogenization annealing on internal residual stress distribution and texture in ME21 magnesium alloy extruded plates [J]. J. Magnes. Alloy., 2019, 7: 186
47
Liu T T, Pan F S. Development and application of “solid solution strengthening and ductilizing” for magnesium alloys [J]. Chin. J. Nonferrous Met., 2019, 29: 2050
Yu Z W, Tang A T, He J J, et al. Effect of high content of manganese on microstructure, texture and mechanical properties of magnesium alloy [J]. Mater. Charact., 2018, 136: 310
49
Hidalgo-Manrique P, Herrera-Solaz V, Segurado J, et al. Origin of the reversed yield asymmetry in Mg-rare earth alloys at high temperature [J]. Acta Mater., 2015, 92: 265
50
Yang Q S, Jiang B, Jiang W, et al. Evolution of microstructure and mechanical properties of Mg-Mn-Ce alloys under hot extrusion [J]. Mater. Sci. Eng., 2015, A628: 143
51
She J, Peng P, Xiao L, et al. Development of high strength and ductility in Mg-2Zn extruded alloy by high content Mn-alloying [J]. Mater. Sci. Eng., 2019, A765: 138203
52
She J, Pan F S, Guo W, et al. Effect of high Mn content on development of ultra-fine grain extruded magnesium alloy [J]. Mater. Des., 2016, 90: 7
53
Pan F, Mao J J, Zhang G, et al. Development of high-strength, low-cost wrought Mg-2.0 mass% Zn alloy with high Mn content [J]. Prog. Nat. Sci.: Mater. Int., 2016, 26: 630
54
Zhao T S, Hu Y B, He B, et al. Effect of manganese on microstructure and properties of Mg-2Gd magnesium alloy [J]. Mater. Sci. Eng., 2019, A765: 138292
55
Hu Y B, Deng J, Zhao C, et al. Microstructure and mechanical properties of Mg-Gd-Zr alloys with low gadolinium contents [J]. J. Mater. Sci., 2011, 46: 5838
56
Peng P, Tang A T, She J, et al. Significant improvement in yield stress of Mg-Gd-Mn alloy by forming bimodal grain structure [J]. Mater. Sci. Eng., 2021, A803: 140569
57
Huang L, Huang G S, Deng Q Y, et al. Effects of trace Ce and Ca on microstructure evolution and formability of AZ31 alloys [J]. Chin. J. Nonferrous Met., 2019, 29: 429
Hou Z Q, Jiang B, Wang Y Y, et al. Development and application of new magnesium alloy materials and their new preparation and processing technologies [J]. Aerosp. Shanghai (Chin. Engl.), 2021, 38(3): 119
Pan F S, Chen X H, Yan T, et al. A novel approach to melt purification of magnesium alloys [J]. J. Magnes. Alloy., 2016, 4: 8
64
Pan F S, Yang M B, Chen X H. A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys [J]. J. Mater. Sci. Technol., 2016, 32: 1211
65
Dai Y, Chen X H, Yan T, et al. Improved corrosion resistance in AZ61 magnesium alloys induced by impurity reduction [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 225
66
Lee Y C, Dahle A K, Stjohn D H. The role of solute in grain refinement of magnesium [J]. Metall. Mater. Trans., 2000, 31A: 2895
67
Ali Y, Qiu D, Jiang B, et al. Current research progress in grain refinement of cast magnesium alloys: A review article [J]. J. Alloys Compd., 2015, 619: 639
68
Kelly P M, Zhang M X. Edge-to-edge matching—The fundamentals [J]. Metall. Mater. Trans., 2006, 37A: 833
69
Zhang M X, Kelly P M. Edge-to-edge matching and its applications: Part II. Application to Mg-Al, Mg-Y and Mg-Mn alloys [J]. Acta Mater., 2005, 53: 1085
70
Wang Y X, Zeng X Q, Ding W J. Effect of Al-4Ti-5B master alloy on the grain refinement of AZ31 magnesium alloy [J]. Scr. Mater., 2006, 54: 269
71
Qian M, Stjohn D H. Grain nucleation and formation in Mg-Zr alloys [J]. Int. J. Cast Met. Res., 2009, 22: 256
72
Qiu D, Zhang M X, Taylor J A, et al. A new approach to designing a grain refiner for Mg casting alloys and its use in Mg-Y-based alloys [J]. Acta Mater., 2009, 57: 3052
73
Fu H M, Zhang M X, Qiu D, et al. Grain refinement by AlN particles in Mg-Al based alloys [J]. J. Alloys Compd., 2009, 478: 809
74
Shahzad M, Janeček M, Wagner L. Effects of prior homogenization treatments on microstructure development and mechanical properties of the extruded wrought magnesium alloy ZK60 [J]. Int. J. Mater. Res., 2009, 100: 370
75
Zhi Y, Hong X, Hu H J, et al. Improving the corrosion resistance of the AZ61 magnesium alloy with a homogenization treatment before the extrusion-shear process [J]. Mater. Technol., 2018, 52: 803
76
Peng J, Pan F S, Zhou M, et al. Effects of homogenization on the formability of ZM21 alloy [J]. Mater. Sci. Forum, 2007, 546-549: 355
77
Pan F S, Peng J, Ding P D, et al. The process to increase the plasticity of magnesium alloy profile [P]. Chin Pat, 200810069376.2, 2008
Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020 [J]. J. Magnes. Alloy., 2021, 9: 705
79
Hu L, Lv H Y, Shi L X, et al. Research on deformation mechanism of AZ31 magnesium alloy sheet with non-basal texture during uniaxial tension at room temperature: A visco-plastic self-consistent analysis [J]. J. Magnes. Alloy., doi: 10.1016/j.jma.2020.12.008
80
Wang Y P, Li F, Wang Y, et al. Effect of extrusion ratio on the microstructure and texture evolution of AZ31 magnesium alloy by the staggered extrusion (SE) [J]. J. Magnes. Alloy., 2020, 8: 1304
81
Sułkowski B, Janoska M, Boczkal G, et al. The effect of severe plastic deformation on the Mg properties after CEC deformation [J]. J. Magnes. Alloy., 2020, 8: 761
82
Meng Y Z, Yu J M, Zhang G S, et al. Effect of circumferential strain rate on dynamic recrystallization and texture of Mg-13Gd-4Y-2Zn-0.5Zr alloy during rotary backward extrusion [J]. J. Magnes. Alloy., 2020, 8: 1228
83
Zhao C Y, Li Z Y, Shi J H, et al. Strain hardening behavior of Mg-Y alloys after extrusion process [J]. J. Magnes. Alloy., 2019, 7: 672
84
Zhao L Y, Xin Y C, Jin Z Y, et al. Thermal stability of different texture components in extruded Mg-3Al-1Zn alloy [J]. J. Magnes. Alloy., 2019, 7: 577
85
Zhao Y T, Chang L L, Guo J, et al. Twinning behavior of hot extruded AZ31 hexagonal prisms during uniaxial compression [J]. J. Magnes. Alloy., 2019, 7: 90
86
Zhong L P, Wang Y J, Dou Y C. On the improved tensile strength and ductility of Mg-Sn-Zn-Mn alloy processed by aging prior to extrusion [J]. J. Magnes. Alloy., 2019, 7: 637
87
Xu B Q, Sun J P, Yang Z Q, et al. Microstructure and anisotropic mechanical behavior of the high-strength and ductility AZ91 Mg alloy processed by hot extrusion and multi-pass RD-ECAP [J]. Mater. Sci. Eng., 2020, A780: 139191
88
Yan Z M, Li X B, Zheng J, et al. Microstructure evolution, texture and mechanical properties of a Mg-Gd-Y-Zn-Zr alloy fabricated by cyclic expansion extrusion with an asymmetrical extrusion cavity: The influence of passes and processing route [J]. J. Magnes. Alloy., 2021, 9: 964
89
Shan Z H, Yang J, Fan J F, et al. Extraordinary mechanical properties of AZ61 alloy processed by ECAP with 160° channel angle and EPT [J]. J. Magnes. Alloy., 2021, 9: 548
90
Zhao X, Li S C, Zhang Z M, et al. Comparisons of microstructure homogeneity, texture and mechanical properties of AZ80 magnesium alloy fabricated by annular channel angular extrusion and backward extrusion [J]. J. Magnes. Alloy., 2020, 8: 624
91
Xu Q, Ma A B, Li Y H, et al. Microstructure evolution of AZ91 alloy processed by a combination method of equal channel angular pressing and rolling [J]. J. Magnes. Alloy., 2020, 8: 192
92
Huang H, Liu H, Wang C, et al. Potential of multi-pass ECAP on improving the mechanical properties of a high-calcium-content Mg-Al-Ca-Mn alloy [J]. J. Magnes. Alloy., 2019, 7: 617
93
Yan K, Liu H, Feng N, et al. Preparation of a single-phase Mg-6Zn alloy via ECAP-stimulated solution treatment [J]. J. Magnes. Alloy., 2019, 7: 305
94
Suh J, Victoria-Hernandez J, Letzig D, et al. Improvement in cold formability of AZ31 magnesium alloy sheets processed by equal channel angular pressing [J]. J. Mater. Process. Technol., 2015, 217: 286
95
Yang Q S, Jiang B, He J J, et al. Tailoring texture and refining grain of magnesium alloy by differential speed extrusion process [J]. Mater. Sci. Eng., 2014, A612: 187
96
Yang Q S, Jiang B, Pan H C, et al. Influence of different extrusion processes on mechanical properties of magnesium alloy [J]. J. Magnes. Alloy., 2014, 2: 220
97
Yang Q S, Jiang B, Tian Y, et al. A tilted weak texture processed by an asymmetric extrusion for magnesium alloy sheets [J]. Mater. Lett., 2013, 100: 29
98
Yang Q S, Jiang B, Zhou G Y, et al. Influence of an asymmetric shear deformation on microstructure evolution and mechanical behavior of AZ31 magnesium alloy sheet [J]. Mater. Sci. Eng., 2014, A590: 440
99
Xu J, Song J F, Jiang B, et al. Effect of effective strain gradient on texture and mechanical properties of Mg-3Al-1Zn alloy sheets produced by asymmetric extrusion [J]. Mater. Sci. Eng., 2017, A706: 172
100
Xu J, Yang T H, Jiang B, et al. Improved mechanical properties of Mg-3Al-1Zn alloy sheets by optimizing the extrusion die angles: Microstructural and texture evolution [J]. J. Alloys Compd., 2018, 762: 719
101
Xu J, Jiang B, Song J F, et al. Unusual texture formation in Mg-3Al-1Zn alloy sheets processed by slope extrusion [J]. Mater. Sci. Eng., 2018, A732: 1
102
Wang Q H, Song J F, Jiang B, et al. An investigation on microstructure, texture and formability of AZ31 sheet processed by asymmetric porthole die extrusion [J]. Mater. Sci. Eng., 2018, A720: 85
103
Zhu Z A, Shi R H, Klarner A D, et al. Predicting and controlling interfacial microstructure of magnesium/aluminum bimetallic structures for improved interfacial bonding [J]. J. Magnes. Alloy., 2020, 8: 578
104
Sheng K, Lu L W, Xiang Y, et al. Crack behavior in Mg/Al alloy thin sheet during hot compound extrusion [J]. J. Magnes. Alloy., 2019, 7: 717
105
He J J, Jiang B, Xie H M, et al. Improved tension-compression performance of Mg-Al-Zn alloy processed by co-extrusion [J]. Mater. Sci. Eng., 2016, A675: 76
106
Wang Q H, Shen Y Q, Jiang B, et al. Enhanced stretch formability at room temperature for Mg-Al-Zn/Mg-Y laminated composite via porthole die extrusion [J]. Mater. Sci. Eng., 2018, A731: 184
107
Wu Y, Feng B, Xin Y C, et al. Microstructure and mechanical behavior of a Mg AZ31/Al 7050 laminate composite fabricated by extrusion [J]. Mater. Sci. Eng., 2015, A640: 454
108
Chai Y F, Song Y, Jiang B, et al. Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets [J]. J. Magnes. Alloy., 2019, 7: 545
109
Tang J W, Chen L, Zhao G Q, et al. Study on Al/Mg/Al sheet fabricated by combination of porthole die co-extrusion and subsequent hot rolling [J]. J. Alloys Compd., 2019, 784: 727
110
Huang D N, Wu N, Dong R F, et al. Optimization of extrusion mold structure for AZ91D magnesium alloy radiator profiles [J]. Forg. Stamp. Technol., 2019, 44(10): 131
Dao C H, Li Q W. Numerical simulation of extrusion process of magnesium alloy profile and die optimization design [J]. Hot Work. Technol., 2018, 47(11): 170
Bai S W, Fang G, Zhou J. Investigation into the extrudability of a new Mg-Al-Zn-RE alloy with large amounts of alloying elements [J]. Metall. Mater. Trans., 2019, 50A: 3246
113
Bai S W, Fang G, Zhou J. Construction of three-dimensional extrusion limit diagram for magnesium alloy using artificial neural network and its validation [J]. J. Mater. Process. Technol., 2020, 275: 116361
114
Bai S W, Fang G, Zhou J. Integrated physical and numerical simulations of weld seam formation during extrusion of magnesium alloy [J]. J. Mater. Process. Technol., 2019, 266: 82
115
Bai S W, Fang G. Experimental and numerical investigation into rectangular tube extrusion of high-strength magnesium alloy [J]. Int. J. Lightweight Mater. Manuf., 2020, 3: 136
116
Wang J F, Peng X, Wang K, et al. Numerical simulation and experimental study on extrusion forming of ultra-large size wide thin-walled hollow magnesium alloy profiles [J]. Chin. J. Nonferrous Met., 2020, 30: 2809
Hu H J, Ying Y L, Ou Z W, et al. Comparisons of microstructures and texture and mechanical properties of magnesium alloy fabricated by compound extrusion and direct extrusion [J]. Mater. Sci. Eng., 2017, A695: 360
118
Feng J K, Zhang D F, Hu H J, et al. Improved microstructures of AZ31 magnesium alloy by semi-solid extrusion [J]. Mater. Sci. Eng., 2021, A800: 140204
119
Hu H J, Qin X, Zhang D F, et al. A novel severe plastic deformation method for manufacturing AZ31 magnesium alloy tube [J]. Int. J. Adv. Manuf. Technol., 2018, 98: 897
120
Hu H J, Hong X, Tian Y, et al. AZ31 magnesium alloy tube manufactured by composite forming technology including extruded-shear and bending based on finite element numerical simulation and experiments [J]. Int. J. Adv. Manuf. Technol., 2021, 115: 2395
121
Zhang S Y, Wang C, Ning H, et al. Relieving segregation in twin-roll cast Mg-8Al-2Sn-1Zn alloys via controlled rolling [J]. J. Magnes. Alloy., 2021, 9: 254
122
Javaid A, Czerwinski F. Effect of hot rolling on microstructure and properties of the ZEK100 alloy [J]. J. Magnes. Alloy., 2019, 7: 27
123
Lee J H, Kwak B J, Kong T, et al. Improved tensile properties of AZ31 Mg alloy subjected to various caliber-rolling strains [J]. J. Magnes. Alloy., 2019, 7: 381
124
Sadeghi A, Mortezapour H, Samei J, et al. Anisotropy of mechanical properties and crystallographic texture in hot rolled AZ31+XSr sheets [J]. J. Magnes. Alloy., 2019, 7: 466
125
Pang L H, Xu C, Chen Q Z. Effect of differential speed rolling on the microstructure and texture of AZ31 magnesium alloy sheets [J]. Shanghai Met., 2018, 40(6): 79
Majchrowicz K, Jóźwik P, Chromiński W, et al. Microstructure, texture and mechanical properties of Mg-6Sn alloy processed by differential speed rolling [J]. Materials, 2021, 14: 83
127
Song X D, Yuan G C, Li X H, et al. Microstructure and texture evolution of differential speed rolled Mg-3Zn-2(Ce/La)-1Mn alloy [J]. Heat Treat. Met., 2020, 45(2): 1
Zhang H L, Xu Z G, Yarmolenko S, et al. Evolution of microstructure and mechanical properties of Mg-6Al alloy processed by differential speed rolling upon post-annealing treatment [J]. Metals, 2021, 11: 926
129
Li Y K, Zha M, Rong J, et al. Effect of large thickness-reduction on microstructure evolution and tensile properties of Mg-9Al-1Zn alloy processed by hard-plate rolling [J]. J. Mater. Sci. Technol., 2021, 88: 215
130
Li Y K, Zha M, Jia H L, et al. Tailoring bimodal grain structure of Mg-9Al-1Zn alloy for strength-ductility synergy: Co-regulating effect from coarse Al2Y and submicron Mg17Al12 particles [J]. J. Magnes. Alloy., 2021, 9: 1556
131
Wang H Y, Yu Z P, Zhang L, et al. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process [J]. Sci. Rep., 2015, 5: 17100
132
Li X L, Li X L, Zhou H T, et al. Simulation of dynamic recrystallization in AZ80 magnesium alloy using cellular automaton [J]. Comput. Mater. Sci., 2017, 140: 95
133
Zhang H, Wang H Y, Wang J G, et al. The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys [J]. J. Alloys Compd., 2019, 780: 312
134
Zhang H M, Cheng X M, Zha M, et al. A superplastic bimodal grain-structured Mg-9Al-1Zn alloy processed by short-process hard-plate rolling [J]. Materialia, 2019, 8: 100443
135
Wang H Y, Feng T T, Zhang L, et al. Achieving a weak basal texture in a Mg-6Al-3Sn alloy by wave-shaped die rolling [J]. Mater. Des., 2015, 88: 157
136
Wang C, Ning H, Liu S, et al. Enhanced ductility and strength of Mg-1Zn-1Sn-0.3Y-0.2Ca alloy achieved by novel micro-texture design [J]. Scr. Mater., 2021, 204: 114119
137
Zhu Y L, Liu F Y, Song B, et al. Coupling pre-aging treatment and side-rolling to improve the mechanical properties of AZ80 alloys [J]. Mater. Sci. Eng., 2020, A779: 139158
138
Xin Y C, Wang M Y, Zeng Z, et al. Tailoring the texture of magnesium alloy by twinning deformation to improve the rolling capability [J]. Scr. Mater., 2011, 64: 986
139
Zheng H P, Wu R Z, Hou L G, et al. Mathematical analysis and its experimental comparisons for the accumulative roll bonding (ARB) process with different superimposed layers [J]. J. Magnes. Alloy., 2021, 9: 1741
140
Lee T J, Kim W J. Microstructure and tensile properties of magnesium nanocomposites fabricated using magnesium chips and carbon black [J]. J. Magnes. Alloy., 2020, 8: 860
141
Wu Z H, Qi Z C, Xu P P, et al. Microstructure and bonding properties of hot-rolled 7075/AZ31B clad sheets [J]. Chin. J. Eng., 2020, 42: 620
Lv H Y, Song D H, Zhou T, et al. Effects of cyclic passes on micro-structure and properties of AZ31 magnesium alloy sheet rolled at high temperature [J]. J. Netshape Form. Eng., 2019, 11(3): 117
Huo P D, Li F, Wang Y, et al. Formability and interface structure of Al/Mg/Al composite sheet rolled by hard-plate rolling (HPR) [J]. Int. J. Adv. Manuf. Technol., doi: 10.1007/s00170-021-07178-0
144
Habila W, Azzeddine H, Mehdi B, et al. Investigation of microstructure and texture evolution of a Mg/Al laminated composite elaborated by accumulative roll bonding [J]. Mater. Charact., 2019, 147: 242
145
Tayyebi M, Rahmatabadi D, Adhami M, et al. Manufacturing of high-strength multilayered composite by accumulative roll bonding [J]. Mater. Res. Express, 2019, 6: 1265e6
146
Rahmatabadi D, Pahlavani M, Marzbanrad J, et al. Manufacturing of three-layered sandwich composite of AA1050/LZ91/AA1050 using cold roll bonding process [J]. Proc. Inst. Mech. Eng., 2021, 235B: 1363
147
Xiao B Q, Song J F, Zhao H, et al. Optimized tension for AZ31B thin sheets rolled with on-line heating rolling [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 227
148
Pan F S, Zeng B, Jiang B, et al. Enhanced mechanical properties of AZ31B magnesium alloy thin sheets processed by on-line heating rolling [J]. J. Alloys Compd., 2017, 693: 414
149
Pan F S, Zeng B, Jiang B, et al. Deformation mechanism and microstructure evolution during on-line heating rolling of AZ31B Mg thin sheets [J]. Mater. Charact., 2017, 124: 266
150
Xiao B Q, Song J F, Tang A T, et al. Effect of pass reduction on distribution of shear bands and mechanical properties of AZ31B alloy sheets prepared by on-line heating rolling [J]. J. Mater. Process. Technol., 2020, 280: 116611
151
Huang Y C, Xiao B Q, Song J F, et al. Effect of tension on edge crack of on-line heating rolled AZ31B magnesium alloy sheet [J]. J. Mater. Res. Technol., 2020, 9: 1988
152
Liu Q, Song J F, Pan F S, et al. The edge crack, texture evolution, and mechanical properties of Mg-1Al-1Sn-Mn alloy sheets prepared using on-line heating rolling [J]. Metals, 2018, 8: 860
153
Liu Q, Song J F, Zhao H, et al. Microstructure and mechanical properties of Mg-6Al-1Sn-Mn sheets prepared by on-line heating rolling [J]. J. Cent. South Univ. (Sci. Technol.), 2020, 51: 3159
Jia Y H, Hou J, Wang H, et al. Effects of an oscillation electromagnetic field on grain refinement and Al8Mn5 phase formation during direct-chill casting of AZ31B magnesium alloy [J]. J. Mater. Process. Technol., 2020, 278: 116542
155
Jia Y H, Chen X R, Le Q C, et al. Macro-physical field of large diameter magnesium alloy billet electromagnetic direct-chill casting: A comparative study [J]. J. Magnes. Alloy., 2020, 8: 716
156
Le Q C, Jia Y H, Chen X R, et al. A phase difference pulse magnetic field electromagnetic continuous casting method [P]. Chin Pat, 201810270280.6, 2018
Ding Y P, Zhu Q, Le Q C, et al. Analysis of temperature distribution in the hot plate rolling of Mg alloy by experiment and finite element method [J]. J. Mater. Process. Technol., 2015, 225: 286
159
Jia W T, Tang Y, Le Q C, et al. Air-cooling analysis of AZ31B magnesium alloy plate: Experimental verification, numerical simulation and mathematical modeling [J]. J. Alloys Compd., 2017, 695: 1838
160
Jia W T, Le Q C. Heat-transfer analysis of AZ31B Mg alloys during single-pass flat rolling: Experimental verification and mathematical modeling [J]. Mater. Des., 2017, 121: 288
161
Ning F K, Jia W T, Hou J, et al. Construction of edge cracks pre-criterion model based on hot rolling experiment and simulation of AZ31 magnesium alloy [J]. Mater. Res. Express, 2018, 5: 056528
162
Ning F K, Zhou X, Le Q C, et al. Fracture and deformation characteristics of AZ31 magnesium alloy plate during tension rolling [J]. Mater. Today Commun., 2020, 24: 101129
163
Jia W T, Le Q C, Tang Y, et al. Role of pre-vertical compression in deformation behavior of Mg alloy AZ31B during super-high reduction hot rolling process [J]. J. Mater. Sci. Technol., 2018, 34: 2069
164
Jia W T, Ning F K, Ding Y P, et al. Role of pre-width reduction in deformation behavior of AZ31B alloy during break-down rolling and finish rolling [J]. Mater. Sci. Eng., 2018, A720: 11
165
Jia W T, Tang Y, Ning F K, et al. Optimum rolling speed and relevant temperature- and reduction-dependent interfacial friction behavior during the break-down rolling of AZ31B alloy [J]. J. Mater. Sci. Technol., 2018, 34: 2051
166
Du Y Z, Liu D J, Ge Y F, et al. Effects of deformation parameters on microstructure and texture of Mg-Zn-Ce alloy [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 2658
167
Sutton S C, Luo A A. Constitutive behavior and processing maps of a new wrought magnesium alloy ZE20 (Mg-2Zn-0.2Ce) [J]. J. Magnes. Alloy., 2020, 8: 111
168
Ding X F, Zhao F Q, Shuang Y H, et al. Characterization of hot deformation behavior of as-extruded AZ31 alloy through kinetic analysis and processing maps [J]. J. Mater. Process. Technol., 2020, 276: 116325
169
Ramesh S, Anne G, Nayaka H S, et al. Investigation of dry sliding wear properties of multi-directional forged Mg-Zn alloys [J]. J. Magnes. Alloy., 2019, 7: 444
170
Hao M J, Cheng W L, Wang L F, et al. Texture evolution induced by twinning and dynamic recrystallization in dilute Mg-1Sn-1Zn-1Al alloy during hot compression [J]. J. Magnes. Alloy., 2020, 8: 899
171
Lim S C V, Yong M S. Plane-strain forging of wrought magnesium alloy AZ31 [J]. J. Mater. Process. Technol., 2006, 171: 393
172
Ogawa N, Shiomi M, Osakada K. Forming limit of magnesium alloy at elevated temperatures for precision forging [J]. Int. J. Mach. Tools Manuf., 2002, 42: 607
173
Kang Y H, Huang Z H, Zhao H, et al. Comparative study of hot deformation behavior and microstructure evolution of as-cast and extruded WE43 magnesium alloy [J]. Metals, 2020, 10: 429
174
Najafi S, Mahmudi R. Enhanced microstructural stability and mechanical properties of the Ag-containing Mg-Gd-Y alloys [J]. J. Magnes. Alloy., 2020, 8: 1109
175
You C, Liu C M, Wan Y C, et al. Dislocations-induced precipitates and their effect on mechanical properties of Mg-Gd-Y-Zr alloy [J]. J. Magnes. Alloy., 2019, 7: 414
176
Kang Y H, Huang Z H, Wang S C, et al. Effect of pre-deformation on microstructure and mechanical properties of WE43 magnesium alloy II: Aging at 250 and 300oC [J]. J. Magnes. Alloy., 2020, 8: 103
177
Madaj M, Greger M, Karas V. Magnesium-alloy die forgings for automotive applications [J]. Mater. Technol., 2015, 49: 267
178
Behrens B A, Schmidt I. Improving the properties of forged magnesium parts by optimized process parameters [J]. J. Mater. Process. Technol., 2007, 187-188: 761
179
Graf M, Ullmann M, Kawalla R. Influence of initial state on forgeability and microstructure development of magnesium alloys [J]. Procedia Eng., 2014, 81: 546
180
Chino Y, Mabuchi M, Shimojima K, et al. Forging characteristics of AZ31 Mg alloy [J]. Mater. Trans., 2001, 42: 414
181
Henry D, Turski M, Lyon P, et al. An introduction to the forging of elektron®43—A high performance wrought magnesium alloy [A]. Magnesium Technology 2014 [C]. Springer International Publishing, 2016: 281
182
Panigrahi S K, Yuan W, Mishra R S, et al. A study on the combined effect of forging and aging in Mg-Y-RE alloy [J]. Mater. Sci. Eng., 2011, A530: 28
183
Asqardoust S, Zarei-Hanzaki A, Fatemi S M, et al. High temperature deformation behavior and microstructural evolutions of a high Zr containing WE magnesium alloy [J]. J. Alloys Compd., 2016, 669: 108
184
Matsumoto R, Kubo T, Osakada K. Fracture of magnesium alloy in cold forging [J]. CIRP Ann., 2007, 56: 293
185
Matsumoto R, Osakada K. Ductility of a magnesium alloy in warm forging with controlled forming speed using a CNC servo press [J]. J. Mater. Process. Technol., 2010, 210: 2029
186
Zhu S Q, Yan H G, Chen J H, et al. Effect of twinning and dynamic recrystallization on the high strain rate rolling process [J]. Scr. Mater., 2010, 63: 985
187
Wang Q, Zhang Z M, Yu J M, et al. A mould for back extrusion of hollow blank to form hollow parts [P]. Chin Pat, 201710516964.5, 2017
Geng L Y, Wang Q, Yang Y B, et al. Microstructure and mechanical properties of AZ80 magnesium alloy wheel hubs produced by extrusion process using hollow billet [J]. Ordnance Mater. Sci. Eng., 2018, 41(2): 11
Zeng J, Wang F H, Wei X X, et al. A new constitutive model for thermal deformation of magnesium alloys [J]. Metall. Mater. Trans., 2020, 51A: 497
190
Zeng J, Wang F H, Dong S, et al. A new dynamic recrystallization kinetics model of cast-homogenized magnesium alloys [J]. Metall. Mater. Trans., 2021, 52A: 316
191
Zeng J, Wang F H, Dong S, et al. Optimization of hot backward extrusion process parameters for flat bottom cylindrical parts of Mg-8Gd-3Y alloy based on 3D processing maps [J]. Int. J. Adv. Manuf. Technol., 2020, 108: 2149
192
Wang F H, Ni J M, Zeng J, et al. A positive and negative extrusion mould and forming method [P]. Chin Pat, 202011280551.X, 2020
Wang Q, Zhang Z M, Zhang X, et al. New extrusion process of Mg alloy automobile wheels [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: s599
196
Wang Q, Zhang Z M, Zhang X, et al. Precision forging technologies for magnesium alloy bracket and wheel [J]. Trans. Nonferrous Met. Soc. China, 2008, 18: s205
197
Zhao X, Gao P C, Zhang Z M, et al. Fatigue characteristics of the extruded AZ80 automotive wheel [J]. Int. J. Fatigue, 2020, 132: 105393
198
Zhang H, Cui Z Z, Du Z H, et al. Isothermal forming of gyroscope-brackets by numerical simulation and experiment [J]. Aerosp. Mater. Technol., 2012, 42: 50
Han X Z, Shan D B, Xu W C, et al. Isothermal precision forging process of Mg-RE alloy component With high-tib and thin-web [J]. Aerosp. Mater. Technol., 2013, 43(3): 60
Xu W C, Shan D B, Guo B, et al. Isothermal forging rare element containing magnesium alloy bracket with thin web and high rib [J]. J. Plast. Eng., 2014, 21(2): 7
Li L, Liu J C. Isothermal forming of EW94 magnesium alloy thin-walled cone tube by the combination of forging and extrusion and its microstructure and properties [J]. J. Plast. Eng., 2013, 20(5): 6
Miura H, Yu G, Yang X. Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties [J]. Mater. Sci. Eng., 2011, A528: 6981
203
Wu Y Z, Yan H G, Chen J H, et al. Microstructure and mechanical properties of ZK21 magnesium alloy fabricated by multiple forging at different strain rates [J]. Mater. Sci. Eng., 2012, A556: 164
204
Zhang J, Huang H. Microstructure and mechanical properties of AZ31 alloy ring processed by hot forging [J]. Mater. Sci. Technol., 2016, 32: 1043
205
Zhang J, Huang H, Yang C B. Effects of hot ring forging on microstructure, texture and mechanical properties of AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2017, A679: 20
206
He C, Jiang B, Wang Q H, et al. Effect of precompression and subsequent annealing on the texture evolution and bendability of Mg-Gd binary alloy [J]. Mater. Sci. Eng., 2021, A799: 140290
207
He J J, Jiang B, Xu J, et al. Effect of texture symmetry on mechanical performance and corrosion resistance of magnesium alloy sheet [J]. J. Alloys Compd., 2017, 723: 213
208
He J J, Jiang B, Yang Q S, et al. Influence of pre-hardening on microstructure evolution and mechanical behavior of AZ31 magnesium alloy sheet [J]. J. Alloys Compd., 2015, 621: 301
209
He J J, Jiang B, Yang Q, et al. Improved the anisotropy of extruded Mg-3Li-3Al-Zn alloy sheet by presetting grain re-orientation and subsequent annealing [J]. J. Alloys Compd., 2016, 676: 64
210
He J J, Jiang B, Zhang J Y, et al. Enhancement of mechanical properties and corrosion resistance of magnesium alloy sheet by pre-straining and annealing [J]. Mater. Sci. Eng., 2015, A647: 216
211
He J J, Mao Y, Fu Y J, et al. Improving the room-temperature formability of Mg-3Al-1Zn alloy sheet by introducing an orthogonal four-peak texture [J]. J. Alloys Compd., 2019, 797: 443
212
He J J, Mao Y, Gao Y P, et al. Effect of rolling paths and pass reductions on the microstructure and texture evolutions of AZ31 sheet with an initial asymmetrical texture distribution [J]. J. Alloys Compd., 2019, 786: 394
213
He J J, Mao Y, Lu S L, et al. Texture optimization on Mg sheets by preparing soft orientations of extension twinning for rolling [J]. Mater. Sci. Eng., 2019, A760: 174
214
He W J, Zeng Q H, Yu H H, et al. Improving the room temperature stretch formability of a Mg alloy thin sheet by pre-twinning [J]. Mater. Sci. Eng., 2016, A655: 1
215
Lee J U, Kim Y J, Kim S H, et al. Texture tailoring and bendability improvement of rolled AZ31 alloy using {101¯2} twinning: The effect of precompression levels [J]. J. Magnes. Alloy., 2019, 7: 648
216
Huang G S, Li H C, Song B, et al. Tensile properties and microstructure of AZ31B magnesium alloy sheet processed by repeated unidirectional bending [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 28
217
Huang G S, Xu W, Huang G J, et al. Textural evolution of AZ31B magnesium alloy sheets undergoing repeated unidirectional bending at room temperature [J]. J. Mater. Sci. Technol., 2009, 25: 365
218
Bo S, Huang G S, Li H C, et al. Texture evolution and mechanical properties of AZ31B magnesium alloy sheets processed by repeated unidirectional bending [J]. J. Alloys Compd., 2010, 489: 475
219
Huang G S, Song B, Xu W, et al. Structure and properties of AZ31B magnesium alloy sheets processed by repeatedly unidirectional bending at different temperatures [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1815
220
Zhang L, Huang G S, Zhang H, et al. Cold stamping formability of AZ31B magnesium alloy sheet undergoing repeated unidirectional bending process [J]. J. Mater. Process. Technol., 2011, 211: 644
221
Zhang H, Huang G S, Kong D Q, et al. Influence of initial texture on formability of AZ31B magnesium alloy sheets at different temperatures [J]. J. Mater. Process. Technol., 2011, 211: 1575
222
Huang G S, Zhang H, Gao X Y, et al. Forming limit of textured AZ31B magnesium alloy sheet at different temperatures [J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 836
223
Huang G S, Zhang L, Song B, et al. Cold stamping for AZ31B magnesium alloy sheet of cell phone house [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: s608
224
Han T Z, Huang G S, Wang Y G, et al Enhanced mechanical properties of AZ31magnesium alloy sheets by continuous bending process after V-bending [J]. Prog. Nat. Sci. Mater. Int., 2016, 26: 97
225
Han T Z, Huang G S, Wang Y G, et al. Microstructure and formability evolutions of AZ31 magnesium alloy sheets undergoing continuous bending process [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 2043
226
Han T Z, Huang G S, Huang L, et al. Influence of continuous bending process on texture evolution and mechanical properties of AZ31 magnesium alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 225