|
|
|
| Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215 |
LIANG Kai, YAO Zhihao( ), XIE Xishan, YAO Kaijun, DONG Jianxin |
| School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China |
|
Cite this article:
LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215. Acta Metall Sin, 2023, 59(6): 797-811.
|
|
|
Abstract With the improvement of the steam parameters of thermal power units, the requirements put forward for the stress rupture strength and structural stability of heat-resistant materials for boiler superheater/reheater pipes become higher. SP2215, as a new heat-resistant alloy, is an excellent candidate for 620-650°C ultra-supercritical boiler superheater/reheater. In this study, the correlation between microstructure evolution and properties of the SP2215 heat-resistant alloy aging at different temperatures and time was studied via a series of creep and impact tests. The results show that the SP2215 alloy has excellent microstructure stability in high-temperature condition. Moreover, various nanoscale precipitations such as Cu-rich, MX, NbCrN, and M23C6 phases occur during aging. In the early period of aging, with the increase in aging temperature and aging time, the precipitations increase rapidly, improving the strength of the material; however, the impact toughness of the SP2215 alloy decreases considerably, with substantial intergranular fracture caused by the continuous precipitation and growth of M23C6 at the boundary, as shown with the quantitative calculation using the JMA model. In the late period of aging, the precipitations gradually stabilize, and the grain size remains in the range of 4.5-5 grade. As a result, the 1 × 105 h stress rupture strength of the SP2215 alloy at 650 and 700oC still remain more than 120 and 70 MPa, respectively. Hence, the alloy can be used as a domestic replacement for foreign HR3C, Super304H, and other similar heat-resistant alloys.
|
|
Received: 24 October 2022
|
|
|
| Fund: National Natural Science Foundation of China(51771017);National Natural Science Foundation of China(52271087) |
Corresponding Authors:
YAO Zhihao, professor, Tel:(010)62332884, E-mail: zhihaoyao@ustb.edu.cn
|
| 1 |
Kloc L, Dymáček P, Sklenička V. High temperature creep of Sanicro 25 austenitic steel at low stresses [J]. Mater. Sci. Eng., 2018, A722: 88
|
| 2 |
Liu Z D, Chen Z Z, He X K, et al. Systematical innovation of heat resistant materials used for 630-700oC advanced ultra-supercritical fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
|
|
刘正东, 陈正宗, 何西扣, 等. 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
doi: 10.11900/0412.1961.2019.00419
|
| 3 |
Xie X S, Yu H Y, Chi C Y, et al. A composite reinforced 22/15 chromium-nickel type high-strength anti-corrosion austenitic heat-resistant steel [P]. Chin Pat, 201310719141.4, 2016
|
|
谢锡善, 于鸿垚, 迟成宇 等. 一种复合强化 22/15铬镍型高强抗蚀奥氏体耐热钢 [P]. 中国专利, 201310719141.4, 2016
|
| 4 |
Liu C, Yao Z H, Guo J, et al. Microstructure evolution behavior of powder superalloy FGH4720Li at near service temperature [J]. Acta Metall. Sin., 2021, 57: 1549
doi: 10.11900/0412.1961.2021.00140
|
|
刘 超, 姚志浩, 郭 婧 等. 粉末高温合金 FGH4720Li 在近服役温度下的组织演变规律 [J]. 金属学报, 2021, 57: 1549
|
| 5 |
Zieliński A, Golański G, Sroka M. Evolution of the microstructure and mechanical properties of HR3C austenitic stainless steel after ageing for up to 30,000 h at 650-750 oC [J]. Mater. Sci. Eng., 2020, A796: 139944
|
| 6 |
Jin X, Xia X, Li Y, et al. Quantitative study of microstructure evolution and the effect on mechanical properties of Super304H during aging [J]. Mater. High Temp., 2019, 36: 459
doi: 10.1080/09603409.2019.1632508
|
| 7 |
Jiang J, Zhu L. Strengthening mechanisms of precipitates in S30432 heat-resistant steel during short-term aging [J]. Mater. Sci. Eng., 2012, A539: 170
|
| 8 |
Du J K. Microstructure evolution and mechanical properties of a new austenitic heat-resistant steel SP2215 after high temperature aging [D]. Beijing: University of Science and Technology Beijing, 2018
|
|
杜吉康. 新型奥氏体耐热钢SP2215高温时效后组织演变与力学性能研究 [D]. 北京: 北京科技大学, 2018
|
| 9 |
Ai Z Q. An Investigation on the high temperature stress rupture strength and structure stability of a new stainless steel SP2215 [D]. Beijing: University of Science and Technology Beijing, 2017
|
|
艾卓群. 新型耐热钢 SP2215 的高温持久和组织稳定性研究 [D]. 北京: 北京科技大学, 2017
|
| 10 |
Xie X S, Ai Z Q, Chi C Y, et al. R & D of the new type SP2215 austenitic heat-resistant steel for servicing 620-650oC boiler super heater/reheater [J]. Steel Pipe, 2018, 47(1): 23
|
|
谢锡善, 艾卓群, 迟成宇 等. 620~650℃锅炉过热器/再热器用新型奥氏体耐热钢SP2215的研发 [J]. 钢管, 2018, 47(1): 23
|
| 11 |
Golański G, Zieliński A, Sroka M, et al. The effect of service on microstructure and mechanical properties of HR3C heat-resistant austenitic stainless steel [J]. Materials, 2020, 13: 1297
doi: 10.3390/ma13061297
|
| 12 |
Xiao J M. Alloy Phase and Phase Transition [M]. Beijing: Metallurgical Industry Press, 1987: 250
|
|
肖纪美. 合金相与相变 [M]. 北京: 冶金工业出版社, 1987: 250
|
| 13 |
Zhang Y J, Zhu L H, Qi A F, et al. Microstructural evolution and the effect on mechanical properties of S30432 heat-resistant steel during aging at 650oC [J]. ISIJ Int., 2010, 50: 596
doi: 10.2355/isijinternational.50.596
|
| 14 |
Ghosh A, Mishra B, Das S, et al. An ultra low carbon Cu bearing steel: Influence of thermomechanical processing and aging heat treatment on structure and properties [J]. Mater. Sci. Eng., 2004, A374: 43
|
| 15 |
Zhou R, Zhu L. Growth behavior and strengthening mechanism of Cu-rich particles in sanicro 25 austenitic heat-resistant steel after aging at 973 K [J]. Mater. Sci. Eng., 2020, A796: 139973
|
| 16 |
Du J K, Zhang Y F, Wang S L, et al. Multiphase strengthening of nanosized precipitates in a cost-effective austenitic heat-resistant steel [J]. Steel Res. Int., 2020, 91: 2000122
doi: 10.1002/srin.v91.9
|
| 17 |
Roncery L M, Weber S, Theisen W. Nucleation and precipitation kinetics of M23C6 and M2N in an Fe-Mn-Cr-C-N austenitic matrix and their relationship with the sensitization phenomenon [J]. Acta Mater., 2011, 59: 6275
doi: 10.1016/j.actamat.2011.06.038
|
| 18 |
Ren W, Wang L. Precipitation behavior of M23C6 in high nitrogen austenitic heat-resistant steel [J]. J. Alloys Compd., 2022, 905: 164013
doi: 10.1016/j.jallcom.2022.164013
|
| 19 |
Zhou Y H, Liu Y C, Zhou X S, et al. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review [J]. J. Mater. Sci. Technol., 2017, 33: 1448
doi: 10.1016/j.jmst.2017.01.025
|
| 20 |
Golański G, Zieliński A, Purzyńska H. Precipitation processes in creep-resistant austenitic steels [A]. Austenitic Stainless Steels—New Aspects [M]. London: IntechOpen, 2017: 93
|
| 21 |
Wang X, Li Y, Chen D X, et al. Precipitate evolution during the aging of Super304H steel and its influence on impact toughness [J]. Mater. Sci. Eng., 2019, A754: 238
|
| 22 |
Hu G D, Wang P, Li D Z, et al. Precipitate evolution in a modified 25Cr-20Ni austenitic heat resistant stainless steel during creep rupture test at 750oC [J]. Acta Metall. Sin., 2018, 54: 1705
|
|
胡国栋, 王 培, 李殿中 等. 新型25Cr-20Ni奥氏体耐热不锈钢750℃持久实验过程中析出相演变 [J]. 金属学报, 2018, 54: 1705
doi: 10.11900/0412.1961.2018.00361
|
| 23 |
Yang Y H, Zhu L H, Wang Q J, et al. Microstructural evolution and the effect on hardness and plasticity of S31042 heat-resistant steel during creep [J]. Mater. Sci. Eng., 2014, A608: 164
|
| 24 |
Zhu C Z, Yuan Y, Bai J M, et al. Impact toughness of a modified HR3C austenitic steel after long-term thermal exposure at 650oC [J]. Mater. Sci. Eng., 2019, A740-741: 71
|
| 25 |
Zhou Q W, Ping S B, Meng X B, et al. Precipitation kinetics of M23C6 carbides in the Super304H austenitic heat-resistant steel [J]. J. Mater. Eng. Perform., 2017, 26: 6130
doi: 10.1007/s11665-017-2982-2
|
| 26 |
Santella M L, Tortorelli P F, Render M, et al. Effects of applied stress and grain size on creep-rupture lifetime prediction for Haynes 282 alloy [J]. Mater. Sci. Eng., 2022, A838: 142785
|
| 27 |
Yao Z H, Zhang M C, Dong J X. Stress rupture fracture model and microstructure evolution for Waspaloy [J]. Metall. Mater. Trans., 2013, 44A: 3084
|
| 28 |
Ou P, Xing H, Wang X L, et al. Tensile yield behavior and precipitation strengthening mechanism in Super304H steel [J]. Mater. Sci. Eng., 2014, A600: 171
|
| 29 |
Nguyen T T, Jeong T M, Erten D T, et al. Creep deformation and rupture behaviour of service-exposed Super304H steel boiler tubes [J]. Mater. High Temp., 2021, 38: 61
doi: 10.1080/09603409.2020.1830609
|
| 30 |
Zheng Z J. The reason analysis of HR3C steel pipe aging impact toughness decreased greatly [J]. Boiler Technol., 2011, 42(04): 46
|
|
郑子杰. HR3C钢管时效冲击韧性大幅降低的原因分析 [J]. 锅炉技术, 2011, 42(04): 46
|
| 31 |
Kaneko K, Fukunaga T, Yamada K, et al. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless stee l [J]. Scr. Mater., 2011, 65: 509
doi: 10.1016/j.scriptamat.2011.06.010
|
| 32 |
Qi Y, Wu Z, Zhang X, et al. Microstructure and phases of deposited metal of SUPER304H steel under high temperature persistent stress [J]. Sci. Rep., 2018, 8: 2618
doi: 10.1038/s41598-018-20594-9
pmid: 29422605
|
| 33 |
Liu P, Chu Z K, Yuan Y, et al. Microstructures and mechanical properties of a newly developed austenitic heat resistant steel [J]. Acta. Metall. Sin. (Engl. Lett.), 2019, 32: 517
doi: 10.1007/s40195-018-0770-0
|
| 34 |
Wei L, Hao W, Cheng Y, et al. Isothermal aging embrittlement in an Fe-22Cr-25Ni alloy [J]. Mater. Sci. Eng., 2018, A737: 40
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|