Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (6): 797-811    DOI: 10.11900/0412.1961.2022.00539
Research paper Current Issue | Archive | Adv Search |
Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215
LIANG Kai, YAO Zhihao(), XIE Xishan, YAO Kaijun, DONG Jianxin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215. Acta Metall Sin, 2023, 59(6): 797-811.

Download:  HTML  PDF(7109KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the improvement of the steam parameters of thermal power units, the requirements put forward for the stress rupture strength and structural stability of heat-resistant materials for boiler superheater/reheater pipes become higher. SP2215, as a new heat-resistant alloy, is an excellent candidate for 620-650°C ultra-supercritical boiler superheater/reheater. In this study, the correlation between microstructure evolution and properties of the SP2215 heat-resistant alloy aging at different temperatures and time was studied via a series of creep and impact tests. The results show that the SP2215 alloy has excellent microstructure stability in high-temperature condition. Moreover, various nanoscale precipitations such as Cu-rich, MX, NbCrN, and M23C6 phases occur during aging. In the early period of aging, with the increase in aging temperature and aging time, the precipitations increase rapidly, improving the strength of the material; however, the impact toughness of the SP2215 alloy decreases considerably, with substantial intergranular fracture caused by the continuous precipitation and growth of M23C6 at the boundary, as shown with the quantitative calculation using the JMA model. In the late period of aging, the precipitations gradually stabilize, and the grain size remains in the range of 4.5-5 grade. As a result, the 1 × 105 h stress rupture strength of the SP2215 alloy at 650 and 700oC still remain more than 120 and 70 MPa, respectively. Hence, the alloy can be used as a domestic replacement for foreign HR3C, Super304H, and other similar heat-resistant alloys.

Key words:  SP2215 heat-resistant alloy      long term aging      precipitation      stress rupture strength      property     
Received:  24 October 2022     
ZTFLH:  TG132.3  
Fund: National Natural Science Foundation of China(51771017);National Natural Science Foundation of China(52271087)
Corresponding Authors:  YAO Zhihao, professor, Tel:(010)62332884, E-mail: zhihaoyao@ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00539     OR     https://www.ams.org.cn/EN/Y2023/V59/I6/797

Fig.1  Varieties of grain size of the SP2215 heat-resistant alloy aged at different temperatures and time (Insets show the microstructures of the alloy under different aging conditions, t—aging time)
Fig.2  OM image of SP2215 heat-resistant alloy aged at 650oC for 500 h
Fig.3  TEM images of Cu-rich precipitates in the SP2215 heat-resistant alloy aged at 650oC (a-d) and 700oC (e-h) for 500 h (a, e), 2000 h (b, f), 6000 h (c, g), and 10000 h (d, h)
Fig.4  EDS analyses of Cu-rich precipitates (a) and the matrix (b)
t / h650oC700oC
5005.9718.95
200011.5138.36
600018.4048.37
1000020.2853.73
Table 1  Average sizes of Cu-rich particles at different aging temperatures and time
Fig.5  SEM images of precipitates at and near the boundaries in the SP2215 heat-resistant alloy aged at 650oC (a-c) and 700oC (d-f) for 500 h (a, d), 4000 h (b, e), and 10000 h (c, f) (Insets show the higher magnification SEM images of precipitates at and near the boundaries)
Fig.6  EDS mappings of the precipitates at and near the boundaries in the SP2215 heat-resistant alloy after aging at 650oC for 6000 h
Fig.7  Volume fractions of M23C6 as a function of aging time at different aging temperatures
Fig.8  Fitting curves of lnln[1 / (1 - f)] and lnt of SP2215 heat-resistant alloy at different aging temperatures (f—conversion rate of M23C6 phase)
Fig.9  JMA kinetic curves of M23C6 of the SP2215 alloy aged at 650 and 700oC
Fig.10  SEM images of M23C6 phases precipitated at the twin boundary (a), inside the grain (b, c) and at the grain boundary (d), and the EDS mappings (e) (Arrows point to the M23C6 phase at the specific locations)
Fig.11  TEM images of MX precipitates after aging at 650oC for 500 h (a), and NbCrN precipitates after aging at 650oC (b) and 700oC (c) for 6000 h
ElementMatrix (500 h)MX
500 h2000 h6000 h10000 h
Nb0.061.408.444.086.10
Cr11.9713.1116.9918.2233.15
N5.958.7124.9312.44-
C33.1732.0219.7222.36-
Table 2  Varieties of main compositions in MX precipitates of SP2215 alloy during the aging at 650oC
ElementMatrix (500 h)MX
500 h2000 h6000 h10000 h
Nb0.062.026.357.4111.79
Cr11.9718.1718.8922.6241.26
N5.9510.8820.5026.1012.61
C33.1721.2327.9218.75-
Table 3  Varieties of main compositions in MX precipitates of SP2215 alloy during the aging at 700oC
Fig.12  EDS mappings of NbCrN precipitates in the SP2215 heat-resistant alloy after aging at 650oC for 2000 h (a) and 6000 h (b)
Fig.13  TEM image of the ellipsoid NbCrN phase (a) and the selected area electrical diffraction (SAED) pattern (b) of circle in Fig.13a
Fig.14  Linear extrapolation curves of SP2215 heat-resistant alloy at different temperatures
Fig.15  C value calculated by fitting (trrupture time, T—temperature)
Fig.16  Larson-Miller curves of SP2215 heat-resistant alloy (P—Larson-Miller parameter, σ—stress)
Fig.17  Variety of tensile strength (Rm) and yield strength (Rp0.2) at high temperature
Fig.18  Hardness curves of the SP2215 heat-resistant alloy after aging at 650 and 700oC
Steel650oC700oCRef.
SP221516.512.5This work
HR3C4.74[30]
Super304H17.5-[6]
Table 4  Comparison of impact energy of SP2215, HR3C[30], and Super304H[6] heat-resistant alloys after long-term aging at 650 and 700oC for 3000 h
Fig.19  Impact energy curve of the SP2215 heat-resistant alloy after aging at 700oC
Fig.20  Impact macrofractures of the SP2215 heat-resistant alloy aged at 650oC (a, b) and 700oC (c, d) for 500 h (a, c) and 6000 h (b, d) (Arrows point to the sources of cracks)
Fig.21  Impact micro fractures of the SP2215 heat-resistant alloy aged at 650oC (a-c) and 700oC (d-f) for 500 h (a, d), 4000 h (b, e), and 10000 h (c, f)
Fig.22  Effect of M23C6 content of on impact energy (akimpact energy, V—volume fraction)
1 Kloc L, Dymáček P, Sklenička V. High temperature creep of Sanicro 25 austenitic steel at low stresses [J]. Mater. Sci. Eng., 2018, A722: 88
2 Liu Z D, Chen Z Z, He X K, et al. Systematical innovation of heat resistant materials used for 630-700oC advanced ultra-supercritical fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
刘正东, 陈正宗, 何西扣, 等. 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
doi: 10.11900/0412.1961.2019.00419
3 Xie X S, Yu H Y, Chi C Y, et al. A composite reinforced 22/15 chromium-nickel type high-strength anti-corrosion austenitic heat-resistant steel [P]. Chin Pat, 201310719141.4, 2016
谢锡善, 于鸿垚, 迟成宇 等. 一种复合强化 22/15铬镍型高强抗蚀奥氏体耐热钢 [P]. 中国专利, 201310719141.4, 2016
4 Liu C, Yao Z H, Guo J, et al. Microstructure evolution behavior of powder superalloy FGH4720Li at near service temperature [J]. Acta Metall. Sin., 2021, 57: 1549
doi: 10.11900/0412.1961.2021.00140
刘 超, 姚志浩, 郭 婧 等. 粉末高温合金 FGH4720Li 在近服役温度下的组织演变规律 [J]. 金属学报, 2021, 57: 1549
5 Zieliński A, Golański G, Sroka M. Evolution of the microstructure and mechanical properties of HR3C austenitic stainless steel after ageing for up to 30,000 h at 650-750 oC [J]. Mater. Sci. Eng., 2020, A796: 139944
6 Jin X, Xia X, Li Y, et al. Quantitative study of microstructure evolution and the effect on mechanical properties of Super304H during aging [J]. Mater. High Temp., 2019, 36: 459
doi: 10.1080/09603409.2019.1632508
7 Jiang J, Zhu L. Strengthening mechanisms of precipitates in S30432 heat-resistant steel during short-term aging [J]. Mater. Sci. Eng., 2012, A539: 170
8 Du J K. Microstructure evolution and mechanical properties of a new austenitic heat-resistant steel SP2215 after high temperature aging [D]. Beijing: University of Science and Technology Beijing, 2018
杜吉康. 新型奥氏体耐热钢SP2215高温时效后组织演变与力学性能研究 [D]. 北京: 北京科技大学, 2018
9 Ai Z Q. An Investigation on the high temperature stress rupture strength and structure stability of a new stainless steel SP2215 [D]. Beijing: University of Science and Technology Beijing, 2017
艾卓群. 新型耐热钢 SP2215 的高温持久和组织稳定性研究 [D]. 北京: 北京科技大学, 2017
10 Xie X S, Ai Z Q, Chi C Y, et al. R & D of the new type SP2215 austenitic heat-resistant steel for servicing 620-650oC boiler super heater/reheater [J]. Steel Pipe, 2018, 47(1): 23
谢锡善, 艾卓群, 迟成宇 等. 620~650℃锅炉过热器/再热器用新型奥氏体耐热钢SP2215的研发 [J]. 钢管, 2018, 47(1): 23
11 Golański G, Zieliński A, Sroka M, et al. The effect of service on microstructure and mechanical properties of HR3C heat-resistant austenitic stainless steel [J]. Materials, 2020, 13: 1297
doi: 10.3390/ma13061297
12 Xiao J M. Alloy Phase and Phase Transition [M]. Beijing: Metallurgical Industry Press, 1987: 250
肖纪美. 合金相与相变 [M]. 北京: 冶金工业出版社, 1987: 250
13 Zhang Y J, Zhu L H, Qi A F, et al. Microstructural evolution and the effect on mechanical properties of S30432 heat-resistant steel during aging at 650oC [J]. ISIJ Int., 2010, 50: 596
doi: 10.2355/isijinternational.50.596
14 Ghosh A, Mishra B, Das S, et al. An ultra low carbon Cu bearing steel: Influence of thermomechanical processing and aging heat treatment on structure and properties [J]. Mater. Sci. Eng., 2004, A374: 43
15 Zhou R, Zhu L. Growth behavior and strengthening mechanism of Cu-rich particles in sanicro 25 austenitic heat-resistant steel after aging at 973 K [J]. Mater. Sci. Eng., 2020, A796: 139973
16 Du J K, Zhang Y F, Wang S L, et al. Multiphase strengthening of nanosized precipitates in a cost-effective austenitic heat-resistant steel [J]. Steel Res. Int., 2020, 91: 2000122
doi: 10.1002/srin.v91.9
17 Roncery L M, Weber S, Theisen W. Nucleation and precipitation kinetics of M23C6 and M2N in an Fe-Mn-Cr-C-N austenitic matrix and their relationship with the sensitization phenomenon [J]. Acta Mater., 2011, 59: 6275
doi: 10.1016/j.actamat.2011.06.038
18 Ren W, Wang L. Precipitation behavior of M23C6 in high nitrogen austenitic heat-resistant steel [J]. J. Alloys Compd., 2022, 905: 164013
doi: 10.1016/j.jallcom.2022.164013
19 Zhou Y H, Liu Y C, Zhou X S, et al. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review [J]. J. Mater. Sci. Technol., 2017, 33: 1448
doi: 10.1016/j.jmst.2017.01.025
20 Golański G, Zieliński A, Purzyńska H. Precipitation processes in creep-resistant austenitic steels [A]. Austenitic Stainless Steels—New Aspects [M]. London: IntechOpen, 2017: 93
21 Wang X, Li Y, Chen D X, et al. Precipitate evolution during the aging of Super304H steel and its influence on impact toughness [J]. Mater. Sci. Eng., 2019, A754: 238
22 Hu G D, Wang P, Li D Z, et al. Precipitate evolution in a modified 25Cr-20Ni austenitic heat resistant stainless steel during creep rupture test at 750oC [J]. Acta Metall. Sin., 2018, 54: 1705
胡国栋, 王 培, 李殿中 等. 新型25Cr-20Ni奥氏体耐热不锈钢750℃持久实验过程中析出相演变 [J]. 金属学报, 2018, 54: 1705
doi: 10.11900/0412.1961.2018.00361
23 Yang Y H, Zhu L H, Wang Q J, et al. Microstructural evolution and the effect on hardness and plasticity of S31042 heat-resistant steel during creep [J]. Mater. Sci. Eng., 2014, A608: 164
24 Zhu C Z, Yuan Y, Bai J M, et al. Impact toughness of a modified HR3C austenitic steel after long-term thermal exposure at 650oC [J]. Mater. Sci. Eng., 2019, A740-741: 71
25 Zhou Q W, Ping S B, Meng X B, et al. Precipitation kinetics of M23C6 carbides in the Super304H austenitic heat-resistant steel [J]. J. Mater. Eng. Perform., 2017, 26: 6130
doi: 10.1007/s11665-017-2982-2
26 Santella M L, Tortorelli P F, Render M, et al. Effects of applied stress and grain size on creep-rupture lifetime prediction for Haynes 282 alloy [J]. Mater. Sci. Eng., 2022, A838: 142785
27 Yao Z H, Zhang M C, Dong J X. Stress rupture fracture model and microstructure evolution for Waspaloy [J]. Metall. Mater. Trans., 2013, 44A: 3084
28 Ou P, Xing H, Wang X L, et al. Tensile yield behavior and precipitation strengthening mechanism in Super304H steel [J]. Mater. Sci. Eng., 2014, A600: 171
29 Nguyen T T, Jeong T M, Erten D T, et al. Creep deformation and rupture behaviour of service-exposed Super304H steel boiler tubes [J]. Mater. High Temp., 2021, 38: 61
doi: 10.1080/09603409.2020.1830609
30 Zheng Z J. The reason analysis of HR3C steel pipe aging impact toughness decreased greatly [J]. Boiler Technol., 2011, 42(04): 46
郑子杰. HR3C钢管时效冲击韧性大幅降低的原因分析 [J]. 锅炉技术, 2011, 42(04): 46
31 Kaneko K, Fukunaga T, Yamada K, et al. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless stee l [J]. Scr. Mater., 2011, 65: 509
doi: 10.1016/j.scriptamat.2011.06.010
32 Qi Y, Wu Z, Zhang X, et al. Microstructure and phases of deposited metal of SUPER304H steel under high temperature persistent stress [J]. Sci. Rep., 2018, 8: 2618
doi: 10.1038/s41598-018-20594-9 pmid: 29422605
33 Liu P, Chu Z K, Yuan Y, et al. Microstructures and mechanical properties of a newly developed austenitic heat resistant steel [J]. Acta. Metall. Sin. (Engl. Lett.), 2019, 32: 517
doi: 10.1007/s40195-018-0770-0
34 Wei L, Hao W, Cheng Y, et al. Isothermal aging embrittlement in an Fe-22Cr-25Ni alloy [J]. Mater. Sci. Eng., 2018, A737: 40
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!